giiC FILE COPY

UNCLASSIFIED

AD NUMBER

TECOM PROJECT NO. 7-C0~-R89-EPO-007

METHODOLOGY INVESTIGATION
FINAL REFORT

OF

SOFIWARE MATURITY MODEL VALIDATION
BY
KEN VAN KARSEN

Software and Interoperability Division

Electronic Technology Test Directorate
YT U.S. ARMY EIECTRONIC PROVING GROUND
Yy lz 7 FORT HUACHUCA, ARIZONA 85613-7110
Fan a" St
= S ur R R o
P B e E e g
s B PR 13 NOVEMEER 198
e SEP 2 410301 é °
Ko 3 “E
VF oy O i
5
Prepared for: Approved for public release;
U.S. Army Test and Evaluation Command distribution unlimited.

Aberdeen Proving Ground, MD 21005-5055

UNCIASSIFIED

DISPOSTTION INSTRUCTIONS

Destroy this report in accordance with appropriate regulations when no
longer needed. Do not return it to the originator.

DISCIATMER

Information and data contained in this document are based on input
available at the time of preparation. Because the results may be subject to
change, this document should not be construed to represent the official
position of the United States Army Materiel Cammand unless so stated.

The use of trade names in this report does not constitute an official
endorsement or approval of the use of such cammercial hardware or software.
This report may not be cited for purposes of advertisement.

DEPARTMENT OF THE ARMY
HEADQUARTERS. U.S. ARMY TEST AND EVALUATION COMMAND
ABERDEEN PROVING GROUND, MARYLAND 21005 — 5055

Y aePLy 10
ATTENTION OF

AMSTE-TC-D (70-10p) 23 AUG 1390

MEMORANDUM FOR Commander, U.S. Army Electronic Proving Ground,

ATTN: STEEP-CT-E (Mr. K. Karsen), Fort Huachuca,
AZ 85613-7110

SUBJECT: Methodology Investigation Final Report of Software
Maturity Model Validation, TECOM Project No. 7-CO-R89-EPO-007

1. Subject report is approved.

2. Point of contact at this headguarters is Mr. Richard V. Haire,
AMSTE-TC-D, amstetcd@apg-emh4.apg.army.mil, AV 298-3677/2170.

FOR THE COMMANDER:

) Vet N

FREDERICK D. MABANTA
Chief, Tech Dev Div
Directorate for Technology

T
\
BY e
Gt oo ‘
T et |
A . . ‘y 4 |
b -1
A N '

Dist i SRR 1|

j

MDY e
LA S

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMB8 No 0704-0188
: Exp Date jun 30, 1986
a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Unlimited
3. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONi1ORING ORGANIZATION
US Army Electronic Proving] (f applicable)
Ground STEEP-ET-S
6¢. ADDRESS (Citv. State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Fort Huachuca, Arizona 85613-7110

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
US Army Test & Eval Cmd
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK_UNIT
Aberdeen Proving Ground, MD 21005 ELEMENT NO.] NO. NO. ACCESSION NO

11. TITLE (Include Security Classification)

Methodology Investigation of Software Maturity Model Validation

12. PERSONAL AUTHOR(S)
Ken Van Karsen

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) J15. PAGE COUNT
Final FROM 7O 1990/11/13 78

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SuB-GROUP Software Test and Software Reliability

1

193‘ABSTRACT (Continue on reverse if necessary and identify by block number)

This report covers phase I of an investigation to identify methods of
quantitatively assessing software reliability. A set of candidate software
reliability models were screened for potential use in estimating reliability
parameters. Other techniques were examined briefly. Finally, the various
methods were evaluated with respect to applicability during developmental
testing. 7

(o9
=\ i
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECUR!ITY CLASSIFICATION
X UNCLASSIFIED/UNLIMITED [SAME AS RPT O oric users | UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL
Mr. Curtis Massie (602) 533-8204 STEEP-ET~-S5
DD FORM 1‘73' 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

Al) other editigns are obsolete

TABLE OF OCONTENTS

PAGE

=t =2

PDRMRD © 0 000 00 0000000000000 0B EPPCUSLPEENOLECERIOORIEBOEOIEPRORIEOBIOEEOEDS 1

S ON SUMMAR

BACKGROUND «cceeesoccacccacssssassssoscssssssnnsssssnnsscassnans
PROBIEM .cccceccccccctnvnossessscsosccessoccencesconnassnnsoonss
OBJECTIVE .ccccenscscssnsssasscccssnsnscsssnssonsossnassnnssonss
PROCEDURES .cccccoccccoscoscatcenssssossssccsssscsscsnncansaccse
RESULTS .vcecvcensccntenantonascontssscsscssssssasssssnssnsssssss
ANALYSTS ceocscccvcocrsasssvasosssssesssscsssssssssonsacasssass
OONCIISIONS 4 cveencecsassasasasssssssssssscssscssasassccnnsesasse
RECOMMENDATTIONS .ococococsccccosssascorssosnccnvsoscsssensscnsocscs

elelalalielel e
VLU LN
Ehowoaaawn

SECTTION 2. DETATIS OF INVESTTIGATTON

SURVEY OF SOFTWARE RELIABILITY MODELS AND METHODOIOGIES 13
Available Software Reliability Modelscccesevceccsecscass 13
Software Performance Parameter Assessmentceecesseseeces 13
1 SPPA Model DeSCription .c.ceeeccescscccecenscconccnsceass 14

.2 SPPA Model INMDUES .eeveeerescccssccscsoncnscccnssnoncenss 14
3 SPPA Model OULPULS .evevveeccccconncssacacssncnnsasneeees 14
SMERFS Interactive Software Package of Modelsce0000.. 15
1 Motivation for SMERFS .cvccececccsccrsccsscsscccscascsaass 15

2 Features Of SMERFS ccccevsecsvsntocsscsscososvsocnsoncssssscs 15

3

4

FPERERPRPRPRPRPRHMRPRRRRB R RR SRR

.
NDNVNNNOMNONNODNNNONNDNRE R RSP

»
NNNNON M

Sample SMERFS Reliability Analysis .ccceceeeccescansceses 17
Other Approaches and Methodologiesceeeeececcscsocesesess 24
Alternative ApProach ..cccecesesccccccccscscscssasscscscses 24
.1 Extent of Test Assessmentcccoeeceeccccccsccecssecsses 24
2 Software Change AnAlySiS ...ceccceccsscccsccsssscscrseses 24
3 Software Performance ASSeSSMeNt ..c.ccescsssccscccscscness 28
4 Other Factors Affecting Software Maturityccc0e00ee. 28
Ancther Alternative Approachcceceecescscececnsscsscseses 28
1 Software Fault Tracking Methodology ..ecececececcccscsess 28
2 Software Fault AnAlySiSccceceeccscccessecessnssssess 28
AMC-P 70=14 ADPYOACH vecuvveeesececocncanennsacacacnnsscsses 29
TeSt COVEXage ..ceoesesecccascsnsscacscassasssessssssnsase 29
Test SUFFiCieNCYy .ceveveecnvsesoscescansscacsscsncacccnes 29

.
. e o e o @

[N S SIS SIS SIS I S I Sl ST S S SIS S S ST U S S S S N)
¢ @ ¢ e ¢ & 2 ° 6 ¢ & 6 e 5 ¢ 4 e E o T _° *
WWWWNNNR R

¢ e o
wWN =

EVAIUATION OF THE MODEIS AND OTHER METHODS (cccveseccccsnscsssse 29
.1 Evaluation Of SPPAeccvsesvcscscssosssscsssssasesanssess 30
.2 Evaluation of SMERFS ...cecesesvesccscsccscssosssossssscasesess 30
.3 Evaluation of Other ApproachesS ...c.cceesescesesccssccssscsssss 30

SECTION 3. APPENDIXES

A. METHODOLOGY INVESTIGATION PROPOSAL cccccoccccccccoscccscccesases A=l
B. REFERENCES tecccccssssosevasssscocsosssnsccssssscsvesnssnsncccssee DBl
C. ACRONYMS AND ABBREVIATIONS ccceccocvrvovecccsoscssssarecccsasnses C-1
D. SMERFS MODELS tcceccescoccccccscsacoscssssscsccsscosscncscescsses D=l
E. GIOSSARY ceccccescossosonssocssscescncsncscsccssssscnssosssvsssesse E-l
F. DISTRIBUTION .ccoecscesoscosceanscosoccnscsscescassansanasossssses F—l

LIST OF TABLES

1.5-1 SOftwa]’.'e Reliabilityme].s 6900000 s000esst et stsrse OO 8
1.5-ITI SMERFS Reliability MOdelS ...ceeeevcceccrsccccscncasonscnans 9
l.s-IIImmmtamm D A N A A A N R R 10

LIST OF FIGURES

2.1~3 SMERFS DAta INDUL veeveeeeeeccesccnccenscscsennsosaccocanases 19
2.1-4 SMERFS Summary Statistics ...eceveeecescecccsccecncnssacaesss 20
2.1-5 SMERFS Plots of the Raw DAta ..cccceececccocescsconscsncsssees 21
2.1-6 SMERFS Execution of the ModelS ...ccececccaccscccacossacscves 22
2.1-7 SMERFS Model Estimation ProcedureSccceeeeecscscessscsss 23
2.1-8 SMERFS (hi~Square Statistic and Tabulated Datacec0e0ess 25
2.1-9 SMERFS Model Fit Of DAtA .cceeceecvscnssccccsssccssascscsscses 26
2.1-10 SMERFS Plot of ResidualsS ..cceeecvescascscccscocccnsscannncees 27

D-1.1 Memu for Execution Time ModelS .cccceececscescccssascaeassesss D=l
D-1.2 Menmu for Interval Data ModelsS ..ccieeccceeccccccccnccccsssases D=2
D-2.1 IAVMOD INput ProMPtS c.ceeeeecececsscacsccsoscsosncsseansanes D-d
D-2.2 IAVMOD Successful Convergence Outputccecceceeeccnceeess D4
D-3.1 MUSMOD INput Prompts .cveeevcccscccssccccssssccccaccscasaanes D6
D-3.2 MUSMOD Successful Convergence OUtputccccevcvecececceeess D=7
D-4.1 GEOMOD INput PraMPtS ceceeeccecccescscsscosssssscssscssssnssssa D=9
D-4.2 GEOMOD Successful Convergence OULPUL ..c.cveecccccnocesceeass D10
D-5.2 NPIMOD Successful Convergence OUtput ...cceececeecccccccscessss D=12
D-6.1 GPOMOD INput PramPts cccveveevccccssosscessscsscsssscsasecsnses D-15
D-6.2 GPOMOD Successful Convergence OUtPUL ...ceecvessscesssssseess D-16
D-7.1 NPIMOD Input Prampts ..ccccceecccesccccscrccesssacassssssesss D-18
D-7.2 NPIMOD Successful Convergence OUtputccceeeesscecsssacaes D-19
D-8.1 BAMMOD INPUt PrOMPES eeeececccessosvocsscsassscsosscnsassasses D21
D~8.2 BAMMOD Successful Convergence Outputccccceeseccscecesss D=22
D-9.1 SDWMOD INPpUut PramptsS cecccecsceccccsscessscscsccssacssscnsnses D=24
D-9.2 SDWMOD Successful Convergence OUtPUL .c.cccecenscesssccnseesee D=25

FOREWORD

CONTENTS

This report on the methodology investigation of the software maturity
model validation represents the campletion of Phase I of the investigation.
In Phase II, the models recammended by this report will be applied to a
tactical system for validation.

This report has been developed in accordance with Test and Evaluation
Cammand (TEOOM) Reg 70-12 and consists of the following sections and

apperndixes:

a. Section 1 is an executive summary of the investigation.

b. Section 2 contains the details of the inwvestigation.

C. Section 3 consists of the following appendixes:
Appendix A - Methodology Investigation Proposal
Appendix B - References
Appendix C - Acronyms and Abbreviations
Appendix D - SMERFS Models
Apperdix E - Glossary
Apperdix F - Distribution

ACKNOWLEDGMENTS

The following personnel fram Camarco, Inc. assisted in the preparation of
this report under Contract Number DAEA18-87-C-0014:

Mr. Britt Barrett camwpiled this final report.
Mr. Fred Gampper provided the technical direction for this report.

Ms. Sharon Vanderhyden and Ms. Karen Norris provided skillful assistance
in the technical editing and word processing of the report.

The following personnel from USAEFG assisted in the preparation of this
report under Contract Number DAEA18-87~C-0014:

Ms. Linda Skjerven and Ms. Cassondra Renfro provided helpful camments in
the review of the report.

SECTTON 1. SUMMARY

1.1 BACKGROUND.

Software became a major part of Cammand, Control, Cammnications, and
Intelligence (C I) systems. The complexity of software system development and
maintenance is steadily increasing. Test data shows that software errors
occaur more often than hardware errors, and that many software errors are
undetected until the system is tested in the field. The cost to correct
software errors increases as detection is prolonged through the software life
cycle. These are same of the reasons why software reliability is becaming
increasingly important (reference 1). Software reliability is probably the
most important factor of software quality (reference 2). It has became, in
fact, vital for software managers and engineers to be able to measure and
predict software reliability before fielding of systems.

System reliability is measured in stochastic terms. That is, system
reliability is "the prabability that the system performs its assigned
functions under specified envirormental conditions for a given period of
time." The use of reliability as a rating factor for a system is intimately
associated with the need for the system to function properly, over a specified
period of time, when such operation is of a critical nature. According to one
Air Force study, "In the past, the approach to determining or predicting
system reliability has been to look at the hardware camponents, calculate
their combined reliability, assume software reliability was one, and use the
hardware reliability number as the system reliability" (reference3). That
study exposes the inadequacy of this approach. It indicates that "software is
a significant contrilbutor to system failures" and it identifies software
reliability models as one dimension of research to improve system reliability
prediction and estimation.

Software reliability may be characterized in terms that closely parallel
the definition of reliability for technical systems. Goodenough defines
software reliability as "the frequency ard criticality of program failure
where failure is an unacceptable effect or behavior under permissible
operating conditions." Like hardware, software reliability can be represented
by the rate at which errors are uncovered and corrected. Unlike hardware,
there is less evidence that empirical error data (collected during testing and
after release of the software) can be used to develop accurate predictive
models of software reliability.

It is difficult to give a precise definition of software reliability.
Many attempts have been made to standardize the definition; however, no one
definition is accepted as standard (reference 1). Same might say that
software is reliable if it is correct. That is, software is reliable if it
meets its initial specifications and performs as specified. This definition
does not take into account the possibility that the software specifications
may be incamplete and incorrect. This definition confuses software
reliability with software correctness. Software reliability concerns any
software failure, whereas software correctness concerns the degree to which
software design and code conform to specifications and standards (reference
4).

Musa defines software reliability as "the probablllty of failure-free

operation of a camputer program for a specified time in a specified

enviroment” (reference 2). This memodology report chooses this definition
because the concern of this investigation is to ascertain software reliability
measures which can be cambined with hardware reliability measures to determine
system reliability. The definition is tied to the idea that the reliability
of a software system (i.e., hardware, software, and manual operations) is
dependent upon the reliability of its hardware and software camponents. In
making this choice, this report recognizes the dependence of software
reliability on other software quality factors such as correctness and
maintainability. This interdependence of software quality factors is the
subject of another methodology investigation report (reference 5).

In Musa's definition of software reliability, failure-free is defined as
having no occurrence of a software failure. Software failure is defined as a
deviation of the operation of a camputer program fram its requirements
(reference 2). Software failure and software error are used interchangeably
in the literature, amd this is the source of much confusion. This is because
software fault and software error are also used interchangeably. Software
error and software fault, therefore, are often equated. A software fault,
however, is not the same thing as a software failure. The problem is resolved
by realizing that software error has two meanings. In one context, software
error means software failure. In ancther context, software error means
software fault. To avoid confusion, this report does not equate software
fault and software error. It does, however, use software failure and software
error interchangeably because many of the cited sources equate these two
terms.

Musa's definition of software failure implies that software failure is a
dynamic process. ‘that is, the program has to be executing for a failure to
occur. Software failures can be characterized in the following ways: time to
failure, time interval between failures, caumilative failures experienced up to
a given time, and failures experienced in a time interval. Since much of the
literature uses software error and software failure interchangeably, software
failures are also characterized as time between error, cumilative errors
experienced up to a given time, and errors experienced in a time interval.

Software faults cause software failures. A software fault is a defect
introduced into software through human error. A software fault is created
when a programmer makes a coding error. Faults are also created when a
systems analyst incorrectly specifies a requirement or when a programmer
analyst produces erronecus program design language (PDL). Each of these
lattermstancescnnleadtoseemmlyoorrectcodewmm when executed,

propagates an erronecus requirement or design.

Program size and canmplexity have grown to the point where it is
impossible to check the astronamical number of logic paths through the code
(reference 6). For exanple, large scale real-time embedded systems such as
the Trident-I Fire Control System (TFCS) have an astronamical mumber of logic
paths (reference 7). It is impossible to check every conceivable logic path
in its camputer code. Software reliability estimation is an area of research
which attempts to quantify the mumber of faults remaining in a p.ugram without
having to check out all of these paths. More importantly, this form of
estimation can tell us how often the faults cause failures. As for hardware,

3

this is the primary objective of software reliability prediction: given a
canponent (software camponent), what is the probability that it will fail in a
given time period, or equivalently, what is the expected time duration between
failures? In hardware, if the mean time between failure (MIBF) is too small,
ﬂmnmmmllablecmpmentsormdwﬂantcarpaentsamusedtoaduevethe
required improvements. In software, the approach to improved reliability is
replacing erronecus code with debugged code.

Over the past two decades, many models and estimation procedures have
been proposed to quantify the reliability of software. Examples of such
models are mathematical models known as software reliability models. Dr.
William H. Farr of the Naval Surface Warfare Center conducted a survey of
reliability modeling and estimation techniques in which he identified three
categories of software reliability models (reference 7): error seeding
models, data damain models, and time damain models. Dr. Amrit Goel of
Syracuse University categorized software reliability models in a similar way
through a survey of his own (reference 3).

Error seeding/tagging models involve "seeding" software with a known
number of software faults. These models assume that the actual distribution
of software faults is the same as the distribution of the "seeded" faults.
The total number of software faults inherent in the software are estimated
from counts of software faults discovered during software testing.

Data damain models estimate a program's current reliability based on the
ratio of the mmber of successful runs abserved to the total number of runs
made. That is, the estimated reliability is simply the total mmber of
successful runs divided by the total number of test runs. Run is an arbitrary
term generally associated with same function software performs (reference 2).

Time damain models have received the greatest emphasis in the literature
and in real world applications. These models find their roots in hardware
reliability modeling. That is, the concepts of hardware reliability modeling
were adapted for use in modeling software reliability. Same of these models,
however, have terms which do not have hardware counterparts (e.g., the number
of remaining faults). Each of these models make assumptions that can vary
fram model to model (reference 7). One of the assumptions that the Geametric
Poisson Model makes, for example, is that each software fault that is
discovered is either corrected or not counted again. Brocks and Motley's
Models, on the other hand, assume that software faults can be reintroduced in
the software fault correction process. As another example, Musa's Execution
Time Model assumes that the software failure rate is constant and changes only
at each software fault correction. Moranda's Geametric Model, however,
assumes that the software failure rate is initially a constant which decreases
in a geametric progression as software failures are detected. Each of these
models makes certain indeperndence assumptions. For example, Moranda's
Geametric Model assumes that the detections of software failures are
independent. This assumption is needed to model software failure as an
exponentially decaying process. The independence assumptions all of these
models make are often challenged. There is, however, considerable evidence
that the assumptions are valid (reference 2). The confusion arises from the
argument that software faults can be related, and hence are not independent.
The possibility of related faults, however, does not imply that software

failures are related because software failures occur as the result of
randamization of inputs.

One category neither survey addresses are software reliability models
based on the intermal characteristics of the program. These models provide a
priori estimates of software failures. That is, they predict the mumber of
software failures before operational data is available. Dozens of such models
estimate the number of faults in a program based on static characteristics of
the program itself which are generally related to software camplexity measures
(reference 8). These models predict the total number of failures using the
fault reduction ratio which is the mumber of inherent faults in the program
divided by the fault-reduction factor. The fault reduction factor is
estimated from empirical data involving previous software development
projects. There is evidence that this factor is project independent, although
such a value is not known at present (reference 2).

People who make these models do not propose they be used without checking
the reasonableness of their assumptions. The current trend is to incorporate
one or nore time damain models in a software package which includes routines
to perform statistical analysis of the models. These packages include options
to check the reasonableness of the model assumptions by seeing how well the
model fits the data (references 6).

The Department of Defense (DoD) has issued a directive which addresses
the reliability problem (reference 9). Department of Defense Directive (DoDD)
5000.3, "Test and Evaluation," authorizes the issuance and publication of DoD
5000.3-M~1, "Test and Evaluation Master Plan (TEMP) Guidelines." According to
these quidelines (reference 10), the TEMP is "the basic planning document for
all test and evaluation (T&E) related to a particular system acquisition."
This document states, "The TEMP shall contain criteria usable for assessment
of software maturity." It indicates that evaluation criteria should include
quantitative thresholds for the Initial Operational Capability (IOC) system at
Milestone I, Milestone II, and for the mature system.

The TEMP Guidelines distinguish between maturity and reliability.
Maturity subsumes reliability. This becames clear if one thinks of
reliability as dependability. Software can be deperdable (not fail), yet it
can still be poorly documented (not be maintainable). According to the TEMP
Guidelines, in order for a system to be mature, it "must have achieved its
reliability thresholds and be fully maintained in accordance with the DoD
Camponent's maintenance concept."

The TEMP Guidelines define reliability to be "the probability that an
item will perform its intended function for a specified interval under stated
corditions." Threshold is defined to be "a minimm level of performance
required at a point in a system's life cycle such that the threshold at
maturity equals the requirement." In view of this, a system must have
reliability thresholds that are quantitative and pZ'dDabll:l.StJC. Since the
system includes software, there should also be software reliability
thresholds. To measure such thresholds, techniques which are quantitative and
probabilistic are required. The area of software reliability estimation arose

for this purpose.

—

1.2 PROBLEM.

DoDD 5000.3-M-1 requires quantitative, probabilistic estimates of
software reliability to help ascertain software maturity. Although software
reliability models which campute such estimates exist, their suitability with
respect to the availability of required data has not been determined.
Furthermore, none of these models have been validated with test data from the
field for test items requiring evaluation by the United States Army Test and
Evaluation Camand (TECOM).

1.3 OBRJECTIVE.

The cbjective of this investigation is to establish an accepted method of
camputing software reliability to help assess the maturity of software in
embedded camputer resources (ECR). Specific goals are:

a. To develop, as part of Phase I, a set of initial candidate software
reliability models to be screened for potential use in estimating software
reliability.

b. To identify, as part of Phase I, approaches other than reliability
models to estimate software reliability.

c. To camplete, as part of Phase I, an evaluation of the set of
cardidate software reliability models and other approaches to see if they can
be applied to develcpmental testing (DT).

d. To provide, as part of Phase II, recammendations for a set of models
or any other methods to help determine the status of software during DT.

1.4 PROCEDURES.

Software reliability models and other methodologies for assessing
software maturity which are currently available from industry, academia, and
govermment agencies were identified through a survey in one or more of the
following ways: attendance at appropriate seminars, examination of the
literature, and consultation with other organizations.

Once identified, the models and methods were evaluated based on the
following criteria:

a. Does the model or other method provide probabilistic and quantitative
estimates of program reliability?

b. Is the model or other method sufficiently documented?

c. Does the model or other method have realistic data requirements?
d. Is the model or other method readily available?

e. Is the model or method applicable to DI?

1.5 RESULTS.

The survey resulted in the identification of mumerous software
reliability models (Table 1.5-I). Most of these models were previously
identified by the Naval Surface Warfare Center (NSWC) in a camprehensive
survey of their own (reference 7).

One of the major findings of the investigation was the identification of
the Statistical Modeling and Estimation of Reliability Functions for Software
(SMERFS) package. SMERFS was developed by the NSWC to help assess the
software maturity of large scale real-time systems such as Trident II. It is
an interactive program for measuring and predicting software reliability. The
models chosen for SMERFS are a subset of those seen in Table 1.5-I plus one
additional model that is an adaptation of one of these models. The SMERFS
models, seen in Table 1.5-II, were chosen "for their performance in
camparative studies and their ability to handle data collected fram various
testing envirorments" (reference 6).

The survey of the current investigation resulted in the identification of
three alternate approaches for measuring software maturity. One of these
approaches is attributable to the TECOM Army Materiel Test and Evaluation
Directorate at White Sands Missile Range (WSMR), New Mexico (reference 11).
Two other approaches include methods outlined in Air Force Operational Test
and Evaluation Center Pamphlet (AFOTECP) 800-2, Volume 1, "Software
Operational Test and Evaluation Guidelines" (reference 12), and in Army
Materiel Cammand Pamphlet (AMC-P) 70-14, "Army Materiel Cammand Software
Quality Indicators" (reference 13).

The evaluation of models and other methods resulted in the selection of a
set of software reliability models for potential use in estimating software
reliability. Only models and other methods satisfying the evaluation criteria
were selected as candidates for DI. Based on these criteria, only the SMERFS
were found to be of potential use for DT. The Software Performance Parameter
Assessment (SPPA) model (reference 14), although statlstlcally sournd, was
ruled out as a candidate, for example, because it is poorly documented and has
unrealistic data requirements. The approadm developed by WSMR was eliminated
as a cardidate, for example, because it is not fully documented, and it does
not provide probabilistic, quantitative estimates of software namrity. It
only gives subjective assessments of software maturity. Furthermore, it does
not address software reliability. The approach indicated in AMC-P 70-14 was
also eliminated because it does not apply to DT, nor does it provide
quantitative, probabilistic estimates.

The evaluation of models and other methods resulted in the realization
that the Test Incident Report (TIR) format does not provide for the collection
of all data needed to use these models or methods. For example, the SMERFS
model data requirements are exhibited in Table 1.5-III. TIRs do not provide
for the starting time of testing, the ending time of testing, and the Central
Processing Unit (CPU) time expended between software error occurrences. TIRs
do provide the wall clock time of error occurrences and the chargeability of
such occurrences (e.g, software).

Table 1.5-I. Software Reliability Models

ERROR SEEDING/TAGGING MODELS DATA DOMAIN MODELS

. Mills Seeding Model . Nelson Model

. Rudner Seeding Model . LaPadula’s Reliability Growth Model
. Basin Tagging Model

TIME DOMAIN APPROACH MODELS

Classical Software Models Bayesian Models
. Weibull Model . Littlewood’s Debugging Model
- Shooman Model . Littlewood and Verrall’s
. Jelinski —Moranda Reliability Growth Model
De.— Eutrophication Model . Thompson and Chelson’s
. Schick —Wolverton Model Reliability Growth Model
. Generalized Poisson Model
. Geometric Model
. Schneidewind’s Model Markov Models
. Non —Homogeneous Poisson Process _ Software Performance i*arameter
. Duane’s Model Assessment
: glusa';s E":"Jtiﬁ“ Ti"h‘: Moldel . Trivedi and Shooman’s Many State
- Brooks and Motley's Models . Littlewood's Semi — Markov Model

1.6 ANALYSIS.

During the investigation, same confusion was found regarding the terms
"software reliability" and "software maturity." Software reliability should
not be confused with software maturity. Nor should the two terms be
considered divorced from one another. Software maturity encampasses software
reliability. Software maturity is defined as "a measure of the software's
evolution toward satisfying all documented user requirements (reference 12)."

Table 1.5-II. SMERFS Reliability Models

WALL CLOCK OR CPU TIME MODELS

1 The Littlewood and Verrall Bayesian Model

2 The Musa Execution Time Model

3 The Geometric Model

4 The NHPP Model for Time Between Error Occurrence

ERROR COUNT MODELS

1 The Generalized Poisson Model

2 The Non —Homogeneous Poisson Model
3 The Brooks and Motley Model

4 The Schneidewind Model

This includes reliability requirements. When one measures software maturity,
one is measuring all the factors making up software. A previous methodology
investigation addressed the problem of measuring all software factors
(reference 5). The current investigation, however, focused on measuring one
aspect of software maturity, namely, software reliability.

Although SMERFS was selected for potential application to DT, other
reliability models could do as well. SMERFS is simply a representative set of
reliability estimation models which satisfies all the selection criteria and
happens to be readily available.

Of all the tools identified, SMERFS holds the most pramise for several
reasons. First, it produces probabilistic amd quantitative estimates of
software rellablhty, which is what the TEMP Guidelines require. Other
approaches do not provide precise estimates of software reliability.
Furthermore, SMERFS is well documented; other approaches however, are not
documented at all. Also, SMERFS has been applied with varying degrees of
success by International Business Machines (IEM) on the Space Shuttle Program
(reference 15), the United States Navy on the Trident Missile Program
(reference 16), and Hughes Aircraft on an air defense system (reference 17).

99Ua1IN220) 10413

usemiog awi| 10} [9PON ddHN YL ¥

‘(2]opow o) saijdde) Jojoey uoissaidwos Bupsa] -
[9PON dpwosy 9yl €

‘(p pue ‘g ‘2 ‘1 s|opow o) sal|dde)

S10119 JO S92UB1INID0 — UOU JO/pUR S9OUILINIJ0 [opON 2wt uonndaxg esniy ayy ¢
9AISS920NS UsaMIaq papuadxe swily NdD ' |ISPOW uelisaAeg |[elloA pue poomapi oyl |
S|ISpPON 3w} NdO

‘(€ pue 95U81IN290) JouT

‘2 ‘1 sjopowl o) saljdde) Bunsay jo rersdul yoes Buunp UooMag OWIL 10} 1SPOW ddHN 9L €
10119 |2ea JO 92US1INII0 JO SWI} O[O [femay]_ ° -

‘(g pue ‘2 ‘| sjopow o} saljdde) Bunsay jo fenusiul ISPON dIlpwoay ay| 2

yoea Jo saw Buipua pue Buipe)s 3000 jlem oy ° |9PO Uelisaleg [[es1a\ pue poomapi ayl |

S|OPOI QWL %90[[leM

10

SMERFS Model Data Requirements

‘(v |]opow 0} salidde) spouad Bunsa) jo Joquinu [eloy a3y | -

m ‘(1 ;opow o} sajdde) pouad Bunsay

@ yoe9 JO pus Y} e pajoailod SI019 JO Jaquinuay] -
0 .Am pue A sjspow [9PO puimapiauyog ayy ¢
m o} saljdde) sjeasajui Bunsal snoiren ayy jo syibus|ayy - [opolN Asjioy pue s)ooig 8y] €
‘(v pue ‘e ‘2 ‘| sjopows o) sat|dde) |[opO Uossiod snoauabowo —uoN ay) 2
Bunsay jo ferusjul Yoes ul pajosiop S10119 Jo Jequinudy| |[9POIN UOSSIOd paziesauan ay] |
S[OPOW UNOY Joug]

SINIWIHIND3IY VLva 13AON T13A0NW

B .

Finally, SMERFS is available for use on microprocessor systems and it is free
of charge.

Although the data requirements of SMERFS are realistic, a problem remains
with data collection. Based on data fram TIRs alone, none of the SMERFS
models can be run. For example, since TIRs do not provide CPU time expended
between software errors, the CPU option cannot be chosen for any of the time
between error models. As ancther example, since TIRs do not provide the
starting and ending times of testing, none of the error count models can be
run. For this same reason, the wall clock option cannot be chosen for any of
the time between error models.

1.7 OONCLUSIONS.

The Phase I goals of the software maturity model investigation were
achieved. The following conclusions were drawn:

a. Models for estimating software reliability abound. The survey of
software reliability models was accamplished. A set of candidate software
reliability models for potential use in estimating software reliability during
DT was developed. :

b. Other approaches for assessing software reliability were identified.

C. An evaluation of these models and other approaches was completed,
providing a set of models for potential application to DI. Of the methods
evaluated, software reliability models were found to be better suited for
making reliability estimations. TIRs, however, do not currently provide
enough fields of information to allow for the collection of data needed to run
these models. Until TIRs are upgraded to include such information, the data
needed to run these models will have to came from elsewhere.

d. The overall abjective of establishing an accepted method of camputing
software reliability to help assess software maturity depends upon the
successful outcame of Phase II.

1.8 RECOMMENDATIONS.

The following recammendations are suggested as a result of this
investigation:

a. To camplete the investigation, it is recammended that Phase II begin
so recammendations for a set of models to help determine software maturity
during DT can be provided. The set of candidate software reliability models
chosen during Phase I should be demonstrated by applying data from a selected
tactical system, and the test results should be evaluated.

b. It is recammended that Army TIRs be enhanced to include fields for
the following data: CPU time expended between software error occurrences;
starting and ending times of testing.

Cc. If the Phase II demonstration proves successful, then the methodology
of using reliability models such as those in SMERFS should be documented in a
Test Operations Procedure (TOP). For example, the TBOOM TOP for Software

11

Testing, dated 15 November 1977, could be revised to address software
reliability as a factor of software maturity. The methodology provided in
this report could be used to evaluate software reliability.

oN 2. oN

Software maturity and software reliability are not equivalent. Software
relJ.ablllty is an important characteristic of software maturity. Software
maturity is "a measure of the software's evolution toward satisfying all
documented user requirements." Reliability is one such requirement.
Maintainability, J.ntegrlty, and portability are examples of others. So
software reliability is a part of software maturity. With this important
distinction between software maturity and software reliability in mind, a set
of software reliability models was identified for use in estimating software
reliability for assessing software maturity. Software reliability measures
are not the only measures of software maturity. Available reliability
estimation methods fram industry, academia, and goverrment agencies were first
identified through a survey that involved attendance at appropriate seminars,
examination of the literature, and consultation with cother organizations.
After the survey, the available reliability estimation methods were then
evaluated using several criteria. Of all the reliability estimation methods
surveyed, only the available software reliability models were fourd to satisfy
all of the criteria. They were fourd to eliminate the guesswork from system
testing through the application of statistical analysis, the need for which is
widely recognized in all fields of serious scientific endeavor.

2.1 SURVEY OF SOFIWARE RELIABILITY MODELS AND METHODOLOGIES.

A set of automated software reliability models was identified through a
survey of existing software reliability estimation methods. The survey was
conducted in the following ways: conferences on software reliability and
testing were attended to see firsthand what software reliability estimation
methods are currently available; goverrment agencies and academia were
consulted; and a search of the literature was performed.

2.1.1 Available Software Reliability Models.

A software reliability model is a mathematical expression that can be
used to quantify/predict the failure behavior of software. Such models must
consider pertinent factors that affect software reliability such as the
following: fault introduction, fault removal, and software operational
enviromment. A good software reliability has the following major
characteristics: it gives good predictions of future failure behavior; it
camputes useful quantities; it is simple to interpret and understand; it is
widely acceptable; and, it is based on sound assumptions. The software
reliability models that are readily available to the United States Army
Electronic proving Ground (USAEPG) include the SPPA and the set of models
contained within the SMERFS. SPPA was developed by USAEFG (reference 14).
SMERESwasdevelqaedbymeNSWCaftertheuwnexterswesmveyofsoftwam
reliability estimation techniques (reference 7). SMERFS is a software package
consisting of eight well-known models appearing in the literature.

2.1.1.1 Software Performance Parameter Assessment.
SPFA is a mathematical model which provides quantitative measures of

software reliability. It was developed by USAEPG to meet the requirements of
the old test and evaluation directive, DoDD 5000.3 (reference 18). That

13

directive required a quarrtltatlve measure of software maturity for embedded

software. mlsdlrectlvehasbeensupersededbyanewdu'ectxve
(reference 9) which still requires, through DoDD 5000.3-M-1 (reference 10),
such quantitative measures.

2.1.1.1.1 SPPA Model Description.

The SPPA is a mathematical model of the fault appearance and removal
process. It is an example of a population model which consists of a Markov or
birth/death process. A population model possesses states and transitions
between states. For a given state, a population consists of a mmber of
individuals. A transition from one state to another corresponds to either an
increase or decrease in population. For this application, a state corresponds
to the number of active or discovered software faults and a transition
corresponds to either the removal (death) of a software fault or the evocation
(birth) of a software fault. For a detailed discussion of the mathematics
involved in this model, see Volume II of the SPPA Methodology Investigation
Final Report (reference 14).

2.1.1.1.2 SPPA Model Inputs.

The inputs to the SPPA model consist of the fault mean function and the
repair mean function. Each of these functions have parameters which must be
estimated before the functions themselves can be applied. The original
evaluation of SPPA indicated that this is a prablem area (reference 19). This
evaluation recammended that this initial parameter estimation should be
autamated. Initial parameter estimation currently has to be done by hand
calculation. These calculations, being tedious and time consuming, impose an
unrealistic data requirement.

The fault mean function models the software fault counting process. This
process is assumed to be Poisson in nature. The actual fault mean function
can be described as the product of a Weibull distribution amd a constant. The
function is estimated from histogram data using techniques from mumerical
analysis. The specific techniques include maximization of a Poisson
likelihood function and the method of constr- ined generalized least squares.

The repair mean function models the software repair counting process.
The parametric form of this function is also that of a Weibull distribution.
Like the fault mean function, this function is estimated using the same
techniques of numerical analysis.

One additional input includes the mumber of debuggers. The number of
debuggers responsible for generation of program repairs or patches is assumed
to be a known quantity. The original evaluation indicated the mmber of
debuggers is an unrealistic if not impossible data requirement because the
model does not allow for the fluctuation of this rumber over the course of
testing.
2.1.1.1.3 SPPA Model Outputs.

The SPPA model outputs the following reliability estimates: mean time

between events, mean time to next fault, number of faults remaining, length of
successful mission, time to last fault, extinctions of the active fault

14

R

population, mean active fault count, time to next extinction, time to last
repair, and probability of zero faults.

2.1.1.2 SMERFS Interactive Software Package of Models.

SMERFS is an interactive software package which performs a software
reliability analysis using any of eight well-known models appearing in the
literature (reference 6). These models include: Littlewood and Verrall's
Bayesian Reliability Growth Model, Moranda's Geametric Model, John Musa's
Execution Time Model, an adaptation of Amrit Goel's NHFP Model, the
Generalized Poisson Model, Amrit Goel's NHPP Model, Brooks and Motley's
Discrete Software Reliability Model for a Software System, and Norman
Schneidewind's Model. A discussion of each model's assumptions, inputs, and
outputs is presented in Apperdix D of this report. For an in-depth
discussion, see the SMERFS User's Guide (reference 16).

2.1.1.2.1 Motivation for SMERFS.

There are several motivations for using SMERFS. One is that it
eliminates the guesswork from the task of software reliability estimation by
applying statistical analysis. SMERFS incorporates models which apply the
approach that has received the greatest emphasis in the literature. That
approach focuses upon modeling either the times between when errors are
detected (measured in CPU or wall clock time) or the number of errors detected
during each testing pericd.

SMERFS allows for a variety of modeling approaches such as exponential,
Poisson, binamial, and Bayesian models which have demonstrated adaptability to
handle a range of data sets. By making available a collection of models, the
software analyst can run all the models and select the one which best fits the
data set of the analyst.

SMERFS provides a camplete reliability analysis which is fully autamated.
It performs the difficult process of estimating the parameters of the
distributions upon which the models are based. The parameter estimation
process requires highly sophisticated numerical techniques which would be
prohibitively time consuming, tedious, and hence, error prone if done by hand.
The reliability analysis, furthermore, includes required statistical analyses
which would be formidable to do by hand. These statistical analyses allow cne
to check the reascnableness of the model assumptions.

2.1.1.2.2 Features of SMERFS.

SMERFS has five desirable characteristics which can be summarized as
follows: it is maintainable; it performs a camplete reliability analysis; it
is interactive; it detects user errors; and it is portable.

2.1.1.2.3 SMERFS Program Structure.

The basic SMERFS program structure is exhibited in Figure 2.1-1. SMERFS
is a memu driven system which provides the user with various merus, ard it
prampts the user for inputs during execution (reference 6). The user inputs
free-format responses via a terminal keyboard. The SMERFS User's Guide
(reference 16) provides a detailed discussion of the prampts and menus.

15

‘llllll.ll.llll-llll‘ -

ainonag weiboid SIHINWS 'L — 12 anbiy

19)U)) aJelep) 90eUNg [eAeN
Q'O ‘UNWIS “HM ‘ured ‘Buijopo Aljiqeljey sremyos 10} weibold SAdeIsiU| UY 133IN0S

|||I|||\

uempaw
wwuu ¢
Bbuny - _~
s U142 10U AR LI
s #- SANOW SO JIPUN
o)) suoado .URW OF UINIAL,
UrRW ot wal * Sraot oU 3 259U WU AU
S, DUMIDIBULPS * msoclu_ m.Sce, s
s fagow s -
TRAAID *
pue $3004q * uesw
xapuy dduu - x3pui pouad sapua # -
J pPouUad SNSIAA 1sajamenbs—ap * snsJaA subua) Xew/ulw *
xapuy pouad 3y w1ep papipasd sfenpIsal 3 pUR uossiod pouad Bunsal abuw *
SNSJaA sNpisa pug puiBuo ‘papipasd ‘paAIIsqo puR SN0 uRipaw * O
ayoiod - aqjoiod - aujoisn pazesaul * toua j010id * sreiot * ~
suBual renba tm
]IN0I JOLI3 UNod 10153 unod Joud unNoI Joud unod J0LI wnod Jou3
uew o] wnal ©
dduu ° .
ASD
xopu awoabd * xapus0113 b“\au." . IR W -
10U SNSIA a0 sns1aa (pop sauua #* W o) Weas * ’ emp .m-v .
X3pW J013 38 URp PR3 SenpISas 3w pue s.esnu Iress Jo o) xewsn - T x - iqn_,huou,oa.ﬂ .
SNSJaA SERDIS preEUBU0 ‘paripad ‘PansIsa0 S.MRUA BUILN00 abun * e+x- TIED SUIGWoD ©
awyolod * agpiod - auoisy - PUR pooMmamil Jjouaolod * uRpauw - oX " vIep pasu * urew O UM’
voweuLat . fa+ % % w)dxa- 1R 13190 * prRoTATy -
ureifoxd U33Miaq auwy u3aIMaq awg uaamiag awn Uzamagq aum Uaamaq awn u3amiag swn (a+0)x % v) oy * wrep buep * L
uonnoexe senpisel pony/Mel s)se})y jo ejep mel suoqeuslo} du
sjepow sonsnels wpeo ndul
pue syod sjod sseupoob op siod ~suen
nusw
s|npous

2.1.1.2.4 Sample SMERFS Reliability Analysis.

An illustration of the use of the SMERFS program in performing a
reliability analysis for a set of data is now provided. The original sample
analysis, doaumented elsewhere (reference 6), was accamplished executing an
earlier version of SMERFS. The latest version of SMERFS, which is Version
IIT, differs very little from previous versions.

Like the sample analysis previously documented (reference 6), this
example will not illustrate all of the SMERFS options such as data
transformations and model fitting. For a more detailed description of all of
the SMERFS options, consult either Appendix D of this document or see the
SMERFS User's Guide (reference 16). Since the model chosen for this example
is Goel's NHPP Model, none of the SMERFS features as applied to time between
error detections are shown since Goel's NHFP Model does not use error count

data.

During the execution of SMERFS, the main menu shown in Figure 2.1-2
appears on the terminal screen. The various module options are listed in the
order in which one would want to perform an analysis.

SMERFS OUTPUT. DATE: 10/04/84 TIME: 0851.19

PLEASE ENTER MODULE OPTION, ZERO FOR LIST=|0

THE AVAILABLE MODULE OPTIONS ARE
DATA INPUT

DATA EDIT
DATA TRANSFORMATIONS
STATISTICS OF THE DATA

PLOT(S) OF THE RAW DATA
EXECUTION OF THE MODELS
GOODNESS-OF-FIT TESTS

PLOT OF ORIGINAL AND PREDICTED DATA
PLOT OF RESIDUAL DATA
10 STOP EXECUTION OF SMERFS

PLEASE ENTER MODULE OPTION=| |

WONOAODWN —

NOTE: Blocked entries represent user input.

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,
Smith, 0.D., Naval Surface Warfare Center

Figure 2.1~-2. SMERFS Main Mermu

17

'Ihedatalrprtoptlmwmldbedxosenfixst This option allows the user
to input actual data from the field to fit to a reliability model. Data input
is exhibited in Figure 2.1-3. The available input options are file input or
keyboard input. These options can be displayed through a memu. Once the
input option is specified, data is entered through either a preexisting file
if the file input option is selected or a terminal keyboard if the keyboard
option is selected. In this example, the keyboard option is selected. Under
dusoptlon,thepmgrammenpmptsforthetypeofdatatobeentared The
SMERFS model data requirements can be seen in Table 1.5-III. Since Goel's
NHFP Model uses error counts, the interval counts and lengths option is chosen
in our example. As Figure 2.1-3 shows, once all of the data has been input,
SMERFS prompts the user to return to the main mem to pick the next module

option.

If a data entry error occurs, data can be edited at this point by
selecting the data edit option. Data can also be transformed by selecting the
data transformation option. SMERFS provides numerous transformations with
which to do this. The options for editing and transforming data can be seen in

Figure 2.1-1.

The user can select the option called "Statistics of the Data" to cbtain
summary statistics on the data that was entered (Figure 2.1-4).

These statistics include the median error count and the mumber of errors found
up to this point. These statistics also include the following measures for
the data: the mean, standard deviation, variance, and the coefficients of
skewness and kurtosis.

In this contiming example, the fifth module option is now chosen to
obtain plots of the raw data (Figure 2.1-5). This results in two plots of
data. One plot shows raw counts of errors per testing period versus the
nurber of the testing period. The other plot charts testing period length
versus testing period mumber.

The "Execution Of The Models" option is chosen next to select the model
devised to fit to the data. Figure 2.1-6 illustrates the mermus and prampts at
this step. For this example, Goel's NHPP model was selected. A list of the
model assumptions and data requirements can be provided to the user at this
point to enable him or her to decide on the model's applicability. If the
user decides to contimie with this candidate model, prampts request inputs
needed to determine the parameters of the model. The inputs at this point
consist of initial estimates of the number of iterations to be used by the
model estimation procedures and initial guesses at model parameters. The
mmber of iterations to be used in numerical procedures implemented by the
model must be chosen so these procedures will converge to a solution. If
successful convergence occurs, reliability estimates and their co i
precision are output; otherwise, the user will have to try a larger number of
iterations or a more appropriate initial quess for model parameters. Figure
2.1-7 exemplifies these model estimation procedures for our contimuing
example.

18

PLEASE ENTER INPUT OPTION, ZERO FORLIST = @
THE AVAILABLE INPUT OPTIONS ARE

1 FILE INPUT

2 KEYBOARD INPUT

3 RETURN TO THE MAIN PROGRAM
PLEASE ENTER INPUT OPTION =
PLEASE ENTER KEYBOARD OPTION, ZERO FOR LIST = @
THE AVAILABLE KEYBOARD INPUT OPTIONS ARE

1 WALL CLOCK TIME — BETWEEN —ERROR (WC TBE)
2 CENTRAL PROCESSING UNITS (CPU) TBE
3 WC TBE AND CPU TBE
4 INTERVAL COUNTS AND LENGTHS
5 RETURN TO THE INPUT ROUTINE
PLEASE ENTER KEYBOARD INPUT OPTION =
A RESPONSE OF NEGATIVE VALUES FOR THE PROMPT
"PLEASE ENTER ERROR COUNT AND TEST LENGTH ="
WILL STOP PROCESSING

PLEASE ENTER ERROR COUNT AND TEST LENGTH= | 9
PLEASE ENTER ERROR COUNT AND TEST LENGTH= | 15
PLEASE ENTER ERROR COUNT AND TEST LENGTH= | 9
PLEASE ENTER ERROR COUNT AND TEST LENGTH= | 13
PLEASE ENTER ERROR COUNT AND TEST LENGTH= |_9

PLEASE ENTER ERROR COUNT AND TEST LENGTH =
PLEASE ENTER ERROR COUNT AND TEST LENGTH =
PLEASE ENTER ERROR COUNT AND TEST LENGTH =
PLEASE ENTER ERROR COUNT AND TEST LENGTH =
PLEASE ENTER ERROR COUNT AND TEST LENGTH= | -

—=lN|WiW|W
|t |t |t |

PLEASE ENTER INPUT OPTION, ZERO FOR LENGTH = E

NOTE: Blocked entries represent user input.

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,
Smith, 0.D., Naval Surface Warfare Center

Figure 2.1-3. SMERFS Data Input

19

PLEASE ENTER MODULE OPTION, ZERO FOR LIST= [0]
THE AVAILABLE MODULE OPTIONS ARE

1 DATA INPUT

2 DATAEDIT

3 DATA TRANSFORMATIONS

4 STATISTICS OF THE DATA

5 PLOT(S) OF THE RAW DATA

6 EXECUTION OF THE MODELS

7 GOODNESS — OF —FIT TESTS

8 PLOT OF ORIGINAL AND PREDICTED DATA

9 PLOT OF RESIDUAL DATA
10 STOP EXECUTION OF SMERFS
PLEASE ENTER MODULE OPTION = [4

INTERVAL DATA WITH EQUAL LENGTHS
STATISTICS FOR ERROR COUNTS TOTALING TO 183

2222222222222 222223222223 222222222 22222222 2]

MEDIAN * .60000000E + 01 *
HINGE * .40000000E + 01 .90000000E + 01 *
MIN/MAX * 20000000E + 01 .15000000E + 02 *
ENTRIES * 28 *
MEAN * .67500000E + 01 *
DEV/VAR * 34278273E + 01 .11750000E + 02 *
SKW/KRT * .53692710E+00 — .45801780E + 00 *

12 2222 2222222222232 222 22X 2T X2 2 2R X RS R R

PLEASE ENTER MODULE OPTION, ZERO FOR LIST= [5]

NOTE: Blocked entries represent user input.

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,
Smith, 0.D., Naval Surface Warfare Center

Figure 2.1-4. SMERFS Summary Statistics

20

R]

TEST DATA
15
C] *
(@] = * *
U 10——* * *x * * *
N] * % *
— * % * *
T 5 , Lo
— * * k%
7 * %
0 IITTIIIII[—I_IIIrllllllllllllll
0 5 10 15 20 25 30
INTERVAL
INTERVAL LENGTH - 1 MONTH
L 2
E N
g 1-——-*****t*****t****t*t***t**t**
T]
H o NI o
0 5 10 15 20 25 30
INTERVAL

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,
Smith, O.D., Naval Surface Warfare Center

Figure 2.1-5. SMERFS Plots of the Raw Data

21

—

PLEASE ENTER MODULE OPTION, ZEROFOR LIST= | 0
THE AVAILABLE MODULE OPTIONS ARE

1 DATA INPUT

2 DATA EDIT

3 DATA TRANSFORMATIONS

4 STATISTICS OF THE DATA

5 PLOT(S) OF THE RAW DATA

6 EXECUTION OF THE MODELS

7 GOODNESS - OF —FIT TESTS

8 PLOT OF ORIGINAL AND PREDICTED DATA

9 PLOT OF RESIDUAL DATA
10 STOP EXECUTION OF SMERFS
PLEASE ENTER MODULE OPTION= | 6

PLEASE ENTER COUNT MODEL OPTION, ZERO FOR LIST=| 0
THE AVAILABLE ERROR COUNT MODELS ARE

1 GENERALIZED POISSON MODEL

2 NON -HOMOGENEOUS POISSON MODEL

3 BROOKS AND MOTLEY'S MODEL

4 SCHNEIDEWIND’S MODEL

5 RETURN TO THE MAIN PROGRAM
PLEASE ENTER MODEL OPTION= | 2

NOTE: Blocked entries represent user input.

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,
Smith, 0.D., Naval Surface Warfare Center

Figure 2.1-6. SMERFS Execution of the Models

22

e

”‘_

PLEASE ENTER A 1 FOR MAXIMUM LIKELIHOOD, A 2 FOR LEAST
SQUARES, OR A 3 TO TERMINATE MODEL EXECUTION= (1]
PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY CONSTANT

(A NUMBER BETWEEN ZERO AND ONE) = [0.04]
PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS =

ML MODEL ESTIMATES AFTER 2 ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS .43140563E — 01

WITH APP. 95% C.l. OF (.24941691E-01, .61339435E—01)
THE TOTAL NUMBER OF ERRORS IS .26954311E +03
WITH APP. 95% C.l. OF (.19963048E+03, .33945575E + 03)

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS .
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO= [{1]
PLEASE ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD = [1]
THE EXPECTED NUMBER OF ERRORS IS .34007917E + 01

PLEASE ENTER A 1 FOR MAXIMUM LIKELIHOOD, A 2 FOR LEAST
SQUARES, OR A 3 TO TERMINATE MODEL EXECUTION= [2]
PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY CONSTANT]
(A NUMBER BETWEEN ZERO AND ONE) = [0.043
PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS = |100

LS MODEL ESTIMATES AFTER 2 ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS .43315840E - 01
THE TOTAL NUMBER OF ERRORS IS .26890859E + 03

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO= (1]
PLEASE ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD =
THE EXPECTED NUMBER OF ERRORS IS .33895981E + 01

PLEASE ENTER A 1 FOR MAXIMUM LIKELIHOOD, A 2 FOR LEAST
SQUARES, OR A 3 TO TERMINATE MODEL EXECUTION = @

NOTE: Blocked entries represent user input.

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,
Smith, 0.D., Naval Surface Warfare Center

Figure 2.1-7. SMERFS Model Estimation Procedures

23

The user can determine the adequacy of the model by performing
statistical analysis through SMERFS. One may perform a Chi-square
goodness-of-fit test and see tables of the original, predicted, and residual
data by choosing option 7. Figure 2.1-8 shows the Chi-square statistic and
the tabulated data for this example. Figure 2.1-9 depicts the raw and fitted
model together. Figure 2.1-10 shows a residual plot of the NHPP fit. The
model fit of data and the residual plots are dbtained through options 8 and 9,
respectively. If the user determines that the model is inadequate based on
these options, a different model will be fitted to the data. Alternmately, the
user could edit the data if it is found to be suspect and run the model again
or try a different data transformation.

2.1.2 Other Approaches and Methodologies.

An attempt was made to identify approaches other than software
reliability models which can estimate software reliability to assess software
maturity. No such approach was found. Other methods which assess software
maturity were identified, but none of them employ statistical analysis to
campute reliability metrics such as mean time to failure (MITF) and remaining
number of software faults.

2.1.2.1 Alternmative Approach.

One approach developed by WSMR makes no attempt to measure software
reljability (reference 11). Instead, it attempts to measure software maturity
which is defined as "the software state of readiness to proceed to the next
stage of its development." Many factors are considered in assessing software
maturity, but not software reliability. The factors considered include
results from various assessments such as extent of test, software change
analysis, software performance assessment, and software test bed assessment.
These assessments involve qualitative quidelines. The final determination of
the maturity of software is done by making an engineering decision based upon
the results of these assessments (reference 11). According to the creator of
this approach, its methodology is not formally documented (reference 20).

2.1.2.1.1 Extent of Test Assessment.

The Extent of Test (EOT) assessment involves the determination of the
extent to which each software requirement has been tested. Results are
categorized in increasing order of desirability as either NOT TESTED, LIMITED,
EXERCISED, or STRESSED. Alternatively, the ratio of the number of test
conditions cbserved to the number of test conditions required can indicate the
EBECT.

2.1.2.1.2 Software Change Analysis.

This involves a determination of the validity of software changes and the
effect of software changes on the validity of previously obtained test
results. A change profile which distinguishes changes due to requirements,
design, and code is maintained. A trend analysis of this profile provides
input to the assessment of software maturity.

24

-

PLEASE ENTER MODULE OPTION, ZERO FOR LIST=
PLEASE ENTER THE CELL COMBINATION FREQUENCY (THE STANDARD
IS AFIVE): OR A MINUS 1 TO INDICATE NO CELL COMBINATIONS = {=1]
THE CHi—SQUARE STATISTICIS .25055378€ +02
WITH 25 DEGREES —OF —FREEDOM.
PLEASE ENTER 1 TO TRY ANOTHER COMBINATION FREQUENCY:
ELSE ZERO=[0]
PLEASE ENTER 1 FOR THE DATA LISTING: ELSE ZERO= [1]
NUMBER ORIGINAL DATA PREDICTED DATA RESIDUAL DATA
1 30000000E +01 .11380985E +02 — 23809854€ +01
2 .15000000€ +02 10800443€ +02 A0995567E +01
. 3 80000C0CE +01 .10440191E +02 —.14401912E +01
4 .13000000E +02 98993724E +01 30006278E +01
5 30000000 +01 85771684 +01 - 57716642€ +00
8 .70000000E +01 91727874 +01 =21727874E +01
7 .10000000E +02 87854825€ +01 12145175E +01
8 B50000000E +01 B4145308€ +01 —24145308E +01
9 50000000E +01 80582421E +01 - 20502421E+01
10 .11000000€ +02 JTI88547E +01 32810453E +01
1 .7000000CE +01 733303S4E +01 — 39303536€E +00
12 A0C0000CE +01 OBOBT74E +01 ~ 30806774E +01
13 B50000000E +01 B7818996E +01 ~.79189978E +00
14 3000000CE +01 B4955459€ +01 — 34955459 +01
15 .90000000E +01 52212829€E +0t 277N 7IE+O
18 .11000000E +02 59588001E +01 50413399€ +01
17 10000000 +02 S7070087E +01 42323313€ +01
18 BO00000OE +91 54860402 +01 SSITEE +00
19 20000000€ +01 52HR4GIE +01 - 2IE +01
20 .40000000€ +01 S0141972E +01 —.10141972E + 01
21 20000000 +01 AB024815E +01 - 28024815 +01
22 JOODOOOGE +01 ASBBTOS1E +01 24002948€ +01
23 AOC00COOE +01 AA54808E +01 - 40543083 +00
; 24 50000000 +01 A21347BSE +01 7BOS2343E +00
23 30000000E +01 A40413165€E +01 —.J0413165E + 01
. 28 30000000E +01 38708730 +01 ~ B7067900E +00
27 30000000E +01 37072484€ +01 —JO724837E +00
28 50000000€ +01 JSE07144E +01 14422856E +01
PLEASE ENTER MOOULE OPTION, ZERO FOR LIST = (8]

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,

Smith, 0.D., Naval Surface Warfare Center

Figure 2.1-8.

25

SMERFS Chi-Square Statistic and Tabulated Data

#——'_-—

15.0

b
N
(8

0.0

TEST DATA — NHPP MODEL FITTED

ILLL‘ L1

liLJIJIJl‘JIII‘IlI

0

IFIIITITIIHTIllHlllllT‘THl
5 10 15 20 25
INTERVAL

30

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,

Smith, 0.D., Naval Surface Warfare Center

Figure 2.1-9. SMERFS Model Fit of Data

26

RESIDUAL PLOT OF NHPP FIT

*

l[llilllllllllyllﬁ‘llll T T

0 5 10 15 20 5 30

INTERVAL

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,
Smith, 0.D., Naval Surface Warfare Center

Figure 2.1-10. SMERFS Plot of Residuals

27

2.1.2.1.3 Software Performance Assessment.

The software performance assessment determines what requirements have
been met. In addition, it ascertains the boundaries and limitations of the
capabilities of the software. These determinations provide a confidence
indicator of the maturity of the software.

2.1.2.1.4 Other Factors Affecting Software Maturity.

oOther factors include adequacy of test beds, adequacy of data collection,
and quality of documentation. The WSMR approach addresses only adequacy of
test beds while recognizing that other factors exist.

Test bed assessment determines the effectiveness of various test beds.
This provides insights into where test resources can be spent most
effectively. Insights can be achieved by camparing the Campleteness of Test
(OOT) from Test Planning to the BOT from Test Analysis.

a)rcanbeassessedusmaTestCoveragemtrlx (TXM) which maps the
total set of software requirements and associated test conditions to planned
developer and Goverrment tests. The test bed supporting a given phase of
testing is effective if such a camparison is favorable.

2.1.2.2 Ancther Alternative Approach.

AFOTEC evaluates the software cf a system with methodologies which
support two test objectives (reference 12). One of these adbjectives is
software maturity. AFOTECP 800-2 Volume 1 (reference 12) defines software
maturity as "a measure of the software's evolution toward satisfying all
documented user requirements." 1In this approach, the number and severity of
changes required to meet documented user requirements is the primary indicator
of mature software (reference 12). Software maturity assessment utilizes a
software tracking methodology and a software fault analysis.

2.1.2.2.1 Software Fault Tracking Methodology.

The Deputy of Software Evaluation (DSE), software evaluators, and
deputies for operations and logistics evaluation take part in system testing,
review system test data, and look into system software related performance
deficiencies. Software problems and enhancements are maintained in a watch
list under documented procedures. A level of severity is assigned to watch
list items under Operational Test and Evaluation (OT&E) guidelines provided in
an OT&E data management plan. Test teams submit service reports on watch list
items thought by the test team to warrant particular attention. Periodic
meetings are conducted during testing to review and validate software
problems. The severity of software problems is also reviewed and validated at
such meetings. A data base of software problems is maintained using a small

camputer system.
2.1.2.2.2 Software Fault Analysis.
This analysis uses two indicators. The primary indicator is the slope of

the graph of new software faults being discovered during test. Software
problems are tracked by a severity point system. Severity points are

28

accumilated and plotted against elapsed time as testing progresses and new
fault data is collected. A decrease in the slope of this graph or curve over
time is the primary indicator of software maturity.

2.1.2.3 AMC-P 70-14 Approach.

AMC-P 70-14 describes software quality indicators designed to provide
program managers with an "early warning mechanism for detecting software
quality problems before they reach the field" (reference 13). Three of these
indicators can provide insight into the reliability and maturity of software.

2.1.2.3.1 Fault Density.

The fault density indicator for a Camputer Software Configuration Item
(CSCI) uses two metrics. One of these is the cumilative faults divided by the
total number of Camputer Software Units (CSUs) in the CSCI. The other is the
camulative faults corrected divided by the total number of CSUs in the CSCI.

AMC-P 70-14 gives a possible rule of thumb for using this indicator to
assess software maturity. According to AMC-P 70-14, "Fault density should
begin to level off during the midpoint of test and flatten as testing nears
campletion.” The pamphlet points out that failure of the fault density curve
to exhibit such characteristics "may be indicative of immature software."

2.1.2.3.2 Test Coverage.

The test coverage indicator is a measure of the campleteness of testing
progress from a developer and user perspective. The indicator is the product
of the percentage of requirements implemented and the percentage of software
structure tested. The percentage of requirements implemented is the ratio of
the number of tested implemented capabilities to the total requlred
capabilities. The percentage of software structure tested is the ratio of
software structure tested to the total software structure. Software structure
is a function of the level and depth of testing. Its inputs may be units,
segments, statements, branches, or path test results.

2.1.2.3.3 Test Sufficiency.

The test sufficiency indicator assesses sufficiency of software
mtegratmnardsystantstugbaseduponapredlctmnofﬂueraxamug
software faults. Indicator inputs include the following: total mumber of
faults predicted in the software; number of faults detected before software
integration testing; mumber of units integrated; total mumber of units in the
CSCI; and, total number of faults detected to date during test. The total
faults predicted has to be estimated. AMC-P 70-14 indicates ways of doing
this.

2.2 EVALUATION OF THE MODELS AND OTHER METHODS.

Upon campletion of the survey, the available reliability estimation
models and other methods were evaluated according to the following criteria:

a. Does the model or other method provide probabilistic and quantitative
estimates of program reliability?

29

f

b. Is the model or other method sufficiently documented?

c. Does the model or other method have realistic data requirements?
d. Is the model or other method readily available?

e. Is the model or other method applicable to DI?

Only the software reliability models within the SMERFS were found to
satisfy all of the criteria. Only these models perform statistical analysis
to eliminate the guesswork from software maturity estimation.

2.2.1 Evaluation of SFFA.

SPPA has been previously evaluated (reference 19). That evaluation
concluded that the data requirements of SPPA are unrealistic and that it is
poorly documented. In that evaluation it was recammended that a different
model be used to estimate software reliability.

In reevaluating the SPPA, the same conclusions were drawn. Although SPPA
satisfies three of the necessary criteria, it fails to satisfy the criteria
for realistic data requirements and sufficient documentation.

2.2.2 Evaluation of SMERFS.

SMERFS is a powerful reliability estimation tool. It has been applied
with varying degrees of success by IBM on the Space Shuttle Program (reference
15), the United States Navy on the Trident Missile Program (reference 16), and
Hughes Aircraft on a continental air defense system (reference 17). 1In all
cases, SMERFS provided conservative estimates of software reliability.

SMERFS is well documented and is available at no cost for use on
microprocessor systems. It performs a camplete reliability analysis of
software failure data. This reliability analysis involves statistical
analysis which caomputes quantitative and probabilistic estimates of software
reliability.

The TIR does not include sufficient information to run the SMERFS models.
For example, TIRs do not provide CPU time expended between software failures;
nor do TIRs provide the starting and ending times of testing. These data are
needed to run the CPU time between failure models and the software failure
count models, respectively. Until TIRs are upgraded to include information,
this data will have to came from elsewhere. The data can be made available
through test officer reports, for example.

2.2.3 Evaluation of Other Approaches.

None of the alternative approaches satisfied all of the criteria. None
of these approaches, therefore, were selected as candidates for application to
DrT.

The one approach developed by WSMR is certainly applicable to DT; its
data requirements, however, are not clear. This problem stems fram the fact
that the approach is not formally documented, which is a problem in itself.

30

-__#

Its greatest drawback, however, is that it campletely 1gnoras statistical
analysis, which is used extensively in all fields of serious scientific
endeavor. Statistical analysis takes the guesswork out of system testing. It
enables one to prov1de pmbablllstlc, quantitative estimates of software
reliability. This is samething which WSMR's system oriented approach does not
do. For these reasons, this approach was eliminated as a way to estimate
software reliability. This does not preclude its use for assessing software
maturity. Software maturity encampasses software reliability. This approach
just does not address the reliability factor of software maturity.

The one approach developed by AFOTEC satisfies all the requirements
except one: it does not provide probabilistic and quantitative estimates of
software reliability. Its software maturity indicator, given as the slope of
a line, cannot tell us the expected time to the next software failure or the
number of faults remaining in the software. Such metrics are necessary if we
are really serious about wanting to know when to stop testing. The key words
here are irdicator and metric. Software metrics measure same property of
software. Software indicators provide insight into software quality, but they
do not really measure software quality. For this reason, this approach was
eliminated as a way to estimate software reliability. This does not rule ocut
its use in assessing software maturity. It is simply recommended that it not
be used to estimate software reliability.

The AMC-P 70-14 approach was eliminated from candidacy for the same
reason as the approach developed by AFOTEC. Like that approach, it can be
used to help assess software maturity. This approach, however, does not
perform reliability estimation. In fact, it requires input from reliability
estimation.

31

This Page Intentionally Blank

32

APPENDIX A

METHODOLOGY INVESTIGATION PROPOSAL

A-1. Title. Software Maturity Model Validation.

A-2. Category. All Department of the Army (DA) mission areas for systems
containing embedded camputer resources (ECR) are supported.
A-3. INSTALIATION OR FIELD OPERATING ACTIVITY. U.S. Army Electronic Proving

Ground, Fort Huachuca, Arizona 85613-7110.

A-4. PRINCIPAL INVESTTIGATOR. Mr. K. Van Karsen, Software and
Interoperability Division, STEEP-ET-DS, AUTOVON 879-02090/2092.

A-5. STATEMENT OF THE PROBIFM. Essentially all systems being developed
employ same use of camputers and software. Unlike hardware, the metrics for
"software Reliability, Availability and Maintainability (RAM)" are
ill-defined. Hereafter, "maturity" will be used instead of RAM. DoD
Directive 5000.3 requires a quantitative measure of software maturity;
Developmental Test (DT) evaluators and testers are required to develcop methods
for determining software maturity. TECOM cannot quantitatively measure the
maturity of the software embedded in computer driven systems.

A-6. BACKGROUND. A mumber of models have been developed to predict software
maturity. However, none have been validated. Under TEQOM project number
7-C0~-RDO-EP1-004, USAERG derived the Software Performance Parameter Assessment
(SPPA), a mathematical model which provided estimates of software maturity.
Unlike previous models, the SPPA took into consideration the repair process,
wherein repairs need not be made directly after encountering a fault (bug).
The SPPA model was used on data fram Lipow and from the Position Location
Reporting System (PLRS) project. A final report was sumitted to Headquarters
(HQ) TECOM and subsequently approved for distribution. Subsequent to the
development of SPPA, new models have appeared, but have not been evaluated for
applicability to the develcpmental testing ernvirorment. Also, same
researchers have developed an integrated package of various models with the
intent that one or more of the models would be appropriate for a given
situation. USAEPG has acquired a govermment-owned package, courtesy of Naval
Surface Warfare Center, containing eight different models. However, the
suitability of these models with respect to the availability of required data
has not been determined.

A-7. GOAL. To establish an accepted method for assessing the maturity of the
software in BECR.

A-B . DES GA .

a. Summary. USAEFG will evaluate currently available software maturity
models and propose the best for use in TECOM software testing.

b. Detajled Approach. The U.S. Army Electronic Proving Ground will:
(1) Phase I - First Year's Effort:

A-1

So i vValidatjon (Continued
(a) Identify software maturity (reliability) models available

from industry, academia, and goverrment agencies.

(b) Examine the data requirements of the various models with
respect to the data available during DT.

(2) Phase II - Second Year's Effort:

(a) Select a set of available models which meet the
constraints imposed by data availability.

(b) Consult with cognizant individuals on the applicability of
the candidate models to TEOOM's test and evaluation mission, and select a
final set of models for use during DOT.

(c¢) Demonstrate the recammernded methods by applying data from
a selected tactical system, and evaluate the results.

c. Final Product(s).
(1) Phase I:
(a) A set of initial candidate software maturity models.
(b) Evaluation of the data requirements for application to DT.
(2) Phase II:

(a) Recammendations for a set of models to determine software
maturity during DT.

d. Coordination. Coordination with TEOOM activities will be
accamplished through the TECOM Software Technical Cammittee (TSOTEC).
Coordination with other organizations will be performed directly.

e. Envirommental Impact Statement. Execution of this task will not have
an adverse impact on the quality of the envirorment.

f. Health Hazard Statement. Execution of this task will not involve
health hazards to personnel.

A-9. JUSTIFICATION.

a. ja Mission. One of TECM's missions is to perform
developmental tests on ECR. The investigation is needed to advance the
concept of software maturity. The Army Science Board report on testing of
electronic systems, with emphasis on software intensive systems, advocates RAM
(maturity) programs as essential.

b. Assocjation with Methodology/Instrumentation Program. This project
supports thrusts of the TECIM Methodology Program to improve the quality of
testing as well as the test process. Instrumentation developed or acquired
previously would be used to form the basis of instrumentation required by the
methodology .

So Ma validatjon inued
c. Capabili imitatio rovement and ct on Testing if
Not Approved.

(1) Present Capability. The current test capability provides
information in the form of Test Incident Reports (TIRs), for assessing
software maturity.

(2) Limjtations. Appropriate maturity models have not been
identified and validated for application to DI, even though same raw data
(TIRs) are available for analysis. Most prior attempts to assess maturity
have avoided the lack of a validated model by using rather crude methods. For
example, maturity per DoD-STD-1679A is determined on the basis of the number
and severity of unresolved software errors at the time of acceptance. The
number of latent faults which may surface after deployment is not estimated.

(3) Improvement. USAEPG and other organizations have developed
software maturity models which may be suitable for DT use. Identification and
validation of a model which will work within the DI envirorment will greatly
improve estimated maturity quality.

(4) Impact on Testing if Not Approved. The intent of DoDD 5000.3
is not met unless a quantitative means of evaluating maturity is provided.
Reporting maturity as the amount of discovered faults, while ignoring latent
faults, results in a distorted view of actual maturity, given the current test
techniques.

d. Dollar Savings. No dollar savings can be assessed at this time. The
potential of this project is that a quantitative measure of software maturity
can be attained; provide insight to Program Manager's (PM's) and evaluator's
as to the maturity of a given software system to prevent fielding of an
immature system and the inherent high cost to fix once fielded.

e. Workload. Over the past 5 years, USAEPG has experienced 17 tests
requiring an evaluation of software maturity.

Examples of items anticipated for testing include:

Test
Item Fiscal Year (FY) 88 &9 90
MSE (Mobile Subscriber Equipment) X X X
JTIDS (Joint Tactical Information
Distribution System) X
MCS (Maneuver Control System) X X X
VISTA (Very Intelligent Surveillane
and Target Acquisition) X X X
FADDC? I X X X
JINTACCS (Joint Interoperability of
Tactical Cammand and Control Systems X X X
EPIRS (formerly RJH) (Enhanced Position Location
Reporting System) X X X
GPS (Glabal Positioning System) X
ASAS (All Source Analysis System) X
AFATDS (AMdvanced Field Artillery Tactical
Data System) X X X

A-3

turi Vvali ion (Co

f. Association with Requirements Documents. DoD Directive 5000.3
requires a quantitative measure of software maturity for each development
phase. To date, there are no accepted measuring schemes.

g. Others. N/A.

A-4

So V: t Co
A-10. RESQURCES.
A. Financial.

Dollars (Thousands)
FY88 FY89

In-House Out-of-House In-House Out-of-House

Personnel
Canmpensation 10.0 12.0

Travel 2.0 3.0

Contractual
Support 52.0 45.0

Consultants &
Other Svcs

Materials &
Supplies 1.0 5.0

Equipment

General &
Admin costs

Subtotals 12.0 53.0 15.0 50.0

FY Totals 65.0 65.0

A-5

So Maturj Validation (Co

b. Explanation of Cost Categories.
(1) Personnel Compensation. This cost represents campensation
chargeable to the investigation for using technical or other civilian
personnel assigned to the investigation.

(2) Travel. This represents cost incurred while visiting
govermment and industry facilities.

(3) Contractual Support. Performance of the investigation will be
accamplished with resources provided under an existing support contract.

(4) Consultants and Other Services. N/A.

(5) Materjal and Supplies. N/A.

(6) Equipment. N/A.

(7) General and Administrative Costs. N/A.
c. Obligation Plan.

FY88
Fiscal Quarter (FQ) 1l 2 3 4 TOTAL
Obligation Rate 50.0 5.0 5.0 5.0 65.0
(Thousards)
d. In-House Personnel.
(1) In-House Personnel Requirements by Speciality.
Man-hours
_FY8ss8 only
Total
Numk Required Availabl : ired
Elect Engr, GS-0855 1 450 450 450
(2) Resolut Non-Available . Ny/A

A-6

P —

ftware Maturi Validation (Continued

A-11. INVESTIGATION SCHETULE.
FY88 FY89

ONDJFMAMJJAS ONDJFMAMJJAS

In-HGJSE -o---.-o-o-I -o-o---o---R
Contracts = - = - - =" - - =" = === Ccoceccec=—-----~
Consultants

Symbols: -—— Active investigation work (all categories)

...+ Contract monitoring (in~house only)

I Interim Report

R Final report due at HQ, TECOM
A-12. ASSOCTATION WITH TOP PROGRAM. TECOM Test Operations Procedure (TOP)
1-1-056, Software Testing, requires the assessment of software maturity. The

results of this investigation may provide recarmended changes to TOP 1-1-056
with regards to software maturity.

FOR THE OCOMMANDER:

ROBERT E. REINER
Chief, Modernization and
Advanced Concepts Division

A7

This Page Intentionally Blank

A-8

APPENDIX B
REFERENCES

1. Software Reliability, leone, A. M., Westinghouse Electric Corporation,
Glen Burnie, Maryland, November 1988.

2. Software Reliability: Measurement, Prediction, Application, Musa, J. D.,
et al., McGraw-Hill, Inc., 1987.

3. RADC-TR-87-171, Methodology for Software Reliability Prediction, Volumes
I-II, McCall, J., et al., November 1987.

4. RADC-TR-85-37, Volumes I-III, Specification of Software Quality
Attributes, Bowen, T.P., et al., February 1985.

5. Methodology Investigation Final Report Specification Requirements for
Software Evaluation, U. S. Army Electronic Proving Ground, Fort Huachuca,
Arizona, July 1988.

6. An Interactive Program for Software Reliability Modeling, Farr, W. H.,
Smith, O. D., Naval Surface Warfare Center. Proceedings of the 9th Annual
Software Engineering Workshop, NASA Goddard, SEL~84-0004, Maryland, 1984.

7. NSWC TR 82171, A Survey of Software Reliability Modeling and Estimation,
Farr, W. H., September 1983.

8. NASA Contractor Report 4187, Quality Measures and Assurance for AT
Software, Rushby, J., October 1988.

9. DoDD 5000.3, "Test and Evaluation," 1986.

10. DoD 5000.3-M-1, "Test and Evaluation Master Plan (TEMP) Guidelines,"
1986.

11. A SystemOriented Methodology to Support Software Testability, Ellis, J
0. and Wygant, M. N., International Test and Evaluation Association (ITEA)
Journal, Volume IX (1988), No. 2.

12. AFOTECP 800-2, Volume 1, Software Operational Test and Evaluation
Guidelines, 1 August 1986.

13. AMC-P 70-14, Army Materiel Command Software Quality Indicators, 30 April
1987.

14. Methodology Investigation Final Report Software Performance Parameter
Assessment Volumes I and II, U.S. Amy Electronic Proving Ground, Fort
Huachuca, Arizona, 1981.

15. Onboard Primary Software Reliability Prediction (Space Shuttle Programs),
Hamilton, D. O., Keller, T. W., IBM. Proceedings of the 1lth Minnowbrook
Workshop on Software Reliability, July 26 - 29 1988, Minnowbrook Conference
Center, Blue Mountain Lake, New York.

B-1

16. NSWC TR 84-373, Statistical Modeling and Estimation of Reliability
Functions for Software (SMERFS) User's Guide, Farr, W. H. and Smith, O. D.,
April 1985.

17. Appliicaiion of a Multi-Model Approach to Estimating Residual Software
Faults and Time Between Failures, Bowen, J. B., Quality and Reliability
Engineering Intermational, Volume 3, 41-51, 1987.

18. DoDD 5000.3, "Test and Evaluation," 1979.

19. SPPA Preliminary Review, Letter No. 83-171, Project No. 0310,
13 May 1983.

20. Telephone Conversation, Marthe Wygant, white Sands Missile Range,
Jaruary 1989.

m.o-......

AFOTECP.ececoes
AMC-P.cccecsoes
APP.cecsocensne
ASAS..ceeevscns
AUTOVON. «eoceee

DAccccoccnccens
DAROCM. e eceneee
DATINP. vececeee
DEV.ceoosceoens
DoDeceese sessee
DODD.ceeenccces
DSE.ccovoncccas
Dleeeeraanns ceee
BCRecevnnnooees
BOTeecevecneesns
EXPececssacnne .
FQececeensennsee
| 3 SR esos
GEOMOD.evveeces
GPOMOD.ecencese
GPSececevnanene
H.oeoeooeeennnn
IBMecoencoccens
IOC.ceoosoessss

I.AVDDD...-.....
Im.'...'....‘.

MAX..ccoeoeeeen
MCS.coeeeneneee
MIN...coooeoeee
| PR
MSE.ccooeecocee
MIBF.cccoeesaee
MITF.cooeecccee
MUSMOD.cceccene

APPENDIX C
ACRONYMS AND ABEREVIATIONS

Advanced Field Artillery Tactical Data System
Air Force Operational Test and Evaluation Center
Air Force Operational Test and Evaluation Center Pamphlet
Army Materiel Cammand - Pamphlet

Approximate

All Source Analysis System

Autamatic Voice Network

Brooks and Motley Model

Cammand, Control, Cammmications, and Intelligence
Campleteness of Test

Central Processing Unit

Camputer Software Configuration Item

Camputer Software Unit

Department of the Army

Department of the Army Readiness Cammand

Data Input

Standard Deviation

Department of Defense

Department of Defense Directive

Deputy of Software Evaluation

Developmental Testing

Embedded Caomputer Resources

Extent of Test

Exponential

Fiscal Quarter

Fiscal Year

Geametric Model

Generalized Poisson Model

Glaobal Positioning System

Headquarters

International Business Machines Corporation

Initial Operational Capability

Intermational Test and Evaluation Association

Joint Interoperability of Tactical Cammand and Control

Systems

Joint Tactical Information Distribution System
Kurtosis

Littlewood and Verrall Model
Logarithm

Least Squares

Maximum

Maneuver Control System
Minimm

Maximum Likelihood

Mabile Subscriber Equipment
Mean Time Between Failure
Mean Time To Failure

Musa Model

NHFP::coossooess
NPIMOD.ceeeenno
NPDMOD.eovecesos
NSWC.ecoooeeons
OCCeivecescccnsne

) 20) ; (R
PIRS.ecceocccss
2 - P
RADC.cccovecnsns
RAM.cecooecnnne
SDAMOD.ceseeens
SKWeeeeoooaonan
SMERFS.ceeeeese

SPPA..ccsoccses
TBE.cceeoascans
TMeveeooocnnns
T&E.coeocssss .o
TEOM.ccovecses
TEMPeeeeecoscsns
TFCSeceesoesnes
TIRcecceosconos
TOPeceessvovnss

TSOTEC. cveeeeee
USA.cevenconnsne
USAEFGee¢eoeccee
VAR.ceceeooossns
VISTAeeeeeaoone
WCeeeveeen cosee
WSMReeeeocoeoes

[

Non-Homogeneous Poisson Process
Non—-Homogeneous Poisson Model

Non-Haomogeneous Poisson Execution Time Model
Naval Surface Warfare Center

Occurrence

Operaticnal Test and Evaluation

PIRS Joint Hybrid

Position Location Reporting System

Program Manager

Rame Alr Develocpment Center

Reliability, Availability, and Maintainability
Schneidewind Model

Skewness

Statistical Modeling and Estimation of Rellablllty Functions
for Software

Software Performance Parameter Assessment
Time Between Error

Test Coverage Matrix

Test and Evaluation

Test and Evaluation Cammand

Test and Evaluation Master Plan

Trident-I Fire Control System

Test Incident Report

Test Operations Procedure

Technical Report

TEOCOM Software Test and Evaluation Comittee
United States Army

United States Army Electronic Electronic Proving Ground
Variance

Very Intelligent Surveillance and Target Acquisition
Wall Clock

White Sands Missile Range

APPENDIX D
SMERFS MODELS

D-1. GENERAL DISCUSSION.

A set of software reliability models for use in estlmatmq software
maturity is described below. The eight models are contained in the SMERFS
interactive software reliability estimation package. Four of these models are
time between failure models and four are error count models. The following
information is provided for each model: model description, model assumptions,
model inputs, model outputs. For more detailed information on the various
prampts and options provided by these models, consult the SMERFS User's Guide
and Farr's Survey of Software Reliability Modelling and Estimation. The time
between and error count models are invoked by an execution time data model
mema and an interval data model memu, respectively (Figures D-1.1 and D-1.2).

PLEASE ENTER THE TIME MODEL OPTION, OR ZERO FOR A LIST.
THE AVAILABLE WALL CLOCK OR CPU TIME MODELS ARE

1 THE LITTLEWOOD AND VERRALL BAYESIAN MODEL

2 THE MUSA EXECUTION TIME MODEL

3 THE GEOMETRIC MODEL

4 THE NHPP MODEL FOR TIME — BETWEEN - ERROR OCC.

5 RETURN TO THE MAIN PROGRAM
PLEASE ENTER THE MODEL OPTION.

IFWALL CLOCKAND CPU TBE DATA, THEN:
PLEASE ENTER ONE FOR WC TBE OR TWO FOR CPU TBE.
*** DATA TYPE ERROR; PLEASE TRY AGAIN (AFTER THE NEXT PROMPT).
END IF

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-1.1. Memu for Execution Time Models.

D-1

N

PLEASE ENTER THE COUNT MODEL OPTION, OR ZERO FOR A LIST.

THE AVAILABLE ERROR COUNT MODELS ARE
1 THE GENERALIZED POISSON MODEL
2 THE NON -HOMOGENEOUS POISSON MODEL
3 THE BROOKS AND MOTLEY MODEL
4 THE SCHNEIDEWIND MODEL
5 RETURN TO THE MAIN PROGRAM.
PLEASE ENTER THE MODEL OPTION.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,

Smith, 0.D., December 1988
Figure D-1.2. Meru for Interval Data Models.

D-2

D-2. THE LITTLEWOOD AND VERRALL BAYESIAN REILIABILITY GROWITH MODEL.

D-2.1. Mcdel Description. Proposed by Littlewood and Verrall, this execution
time data model tries to take into account the fact that the software

correction process can introduce errors.
D-2.2. Model Assumptions. This model makes the following assumptions:

a. The software is operated in a manner similar to its expected
operational usage.

b. Successive times between software failures are independent,
exponentially distributed randam variables x(i), i= 1,2,...,n with parameter
p(i).

c. The u(i) are independent, I' distributed variables with parameters a
and 7(i). a is a I' function parameter. = (i) is a function which describes a
programmer's quality and the programming task's difficulty. Littlewood and
Verrall recammend a simple linear or quadratic function for the form of .
This recammendation is implemented in SMERFS.

D-2.3. Model Inputs. The model inputs include data entered via the SMERFS
data input module, DATINP, and responses to prampts from the SMERFS IAVMOD
module.

D-2.3.1. DATINP Inputs. The data input via the DATINP consists of the times
between the error occurrences (i.e., the x(i)'s) measured in CPU or wall clock
time. This is the raw data needed to run the model (i.e., the model data

requirements) .

D-2.3.2. [LAVMOD Prompts. IAVMOD prampts consist of description and list,
input, and prediction vector creation prampts.

D-2.3.2.1. IAVMOD Description and List Prompts. SMERFS prompts the user

through IAVMOD to see if the user wishes to see a list of the model's
assumptions and data requirements. The model assumptions are those discussed
above. The model data requirements are the inputs to DATINP.

D-2.3.2.2. [AVMOD Input and Prediction Vector Creatjon Prompts. The LAVMOD
input prompts are exhibited in the mermu in Figure D-2.1. The first prampt in
that mermu lets the user specify the desired method of estimating a, the I'
function parameter, and the linear or quadratic coefficients of the 7
function. The two methods of estimation allowed are maximm likelihood and
least squares. The second prampt allows the user to specify whether he or she
wants a linear or quadratic m function. The third prampt lets the user enter
initial estimates for the linear or quadratic coefficients known as the S
parameters. The final prompt lets the user enter the mumber of iterations to
perform to obtain the maximm likelihood or least squares estimates of the a

and f parameters.

D-2.4. Mode]l Outputg. If successful convergence is achieved, LAVMOD outputs
the expected mean time before the next error; otherwise, it lets the user try
a larger number of iterations. In either case, estimates for the a and 8
parameters for the 7 function discussed above are cutput. The IAVMOD
successful convergence output memu is seen in Figure D-2.2.

D-3

fﬁ

PLEASE ENTER 1 FOR MAXIMUM LIKELIHOOD, 2 FOR LEAST
SQUARES, OR 3 TO TERMINATE MODEL EXECUTION.

WHICH OF THE FOLLOWING FUNCTIONS DO YOU DESIRE
TO USE AS THE PHI(l) IN THE GAMMA DISTRIBUTION?
THE GAMMA 1S USED AS THE PRIOR WITH PARAMETERS

ALPHA AND PHI(l)
1. PHI(I) = BETA(O) + BETA(1) * | (LINEAR)
onz- PHI() = BETA(O) + BETA(1) * 1**2 (QUADRATIC).
PLEASE ENTER iNITIAL ESTIMATES FOR BETA(O) AND BETA(1).

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-2.1. IAVMOD Input Prampts.

__MODEL ESTIMATES AFTER__ ITERATIONS ARE:
ALPHA
BETA(0)
BETA(1)

THE FUNCTION EVALUATED AT THESE POINTS IS

PLEASE ENTER 1 FOR AN ESTIMATE OF THE MEAN TIME BEFORE
THE NEXT ERROR; ELSE ZERO.

THEEXPECTED TIME IS

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-2.2. IAVMOD Successful Corvergence Output.

D-4

D-3. JOHN MUSA'S EXECUTION TIME MODEL.

D-3.1. Model Description. This execution time data model is based upon the
amount of CPU time used in testing rather than upon the amount of wall clock
or calendar time. In addition to modeling software reliability, this model
can be used to model allocation of resources for testing segments and relate
CPU time to wall clock time. The model is important for this reason.

D-3.2. Model Assumptions. The following assumptions are those needed only
for reliability modeling. The assumptions for modeling resource allocation
are documented in the SMERFS User's Guide.

a. The software is operated in a way similar to its expected operatiocnal
usage.

b. The probability of detecting any Jjiven error is in no way affected by
the occurrence of detecting another error (i.e., error detections are

indeperdent) .
c. Every failure of software is abserved.

d. The execution times between software failures are piecewise
exponentially distributed. That is, the hazard rate function is a constant
which changes whenever an error is corrected. '

e. The ratio of the hazard rate to the number of errors remaining in the
program is a constant.

f. The ratio of the rate of fault correction to the rate of failure
occurrence is a constant.

D-3.3. Model Inpts The model inputs include data entered through the
SMERFS DATINP and - 2sponses to prompts from the SMERFS MUSMOD module.

D-3.3.1. DATINP Inputs. The data input via the DATINP module consists of the
times between software failure occurrences measured in CPU time.

D-3.3.2. MUSMOD Prompts. MUSMOC prampts consist of description and list,
input, and prediction vector creation prampts.

D-3.3.2.1. MUSMOD Description and List Prampts. SMERFS prompts the user
through MUSMOD to see if the user wishes to see a list of the model's

assumptions and data requirements. The model assumptions are those discussed
ahove. The model data requirements are the inputs to DATINP ard the testing
campression factor, C. This factor is the average ratio of the error
detection rate during testing to that during operational use. This factor
allows for changes in the operational envirorment.

D-3.3.2.2. MUSMOD Input and Prediction Vector Creation Prampts. The MUSMOD
input prampts are exhibited in Figure D-3.1. The first prampt lets the user

specify the testing campression factor. If there is no basis for estimation
of this factor, a conservative approach wauld be to let C equal one. The
second prampt allows the user to enter an initial estimate of the required
mmber of software failures that must be experienced to uncover all software

D-5

PLEASE ENTER AN ESTIMATE FOR THE TESTING COMPRESSION

FACTOR, C.
IT IS THE AVERAGE RATE OF DETECTIONS OF ERRORS DURING

' HE TESTING PHASE TO THAT DURING USE. (A CONSERVATIVE
VALUE IS 1.0).

PLEASE ENTER AN INITIAL ESTIMATE FOR THE TOTAL NUMBER
OF ERRORS THAT MUST BE DETECTED IN ORDER TO UNCOVER

ALL PROGRAM ERRORS.
PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-3.1. MUSMOD Input Prumpts.

faults within the program. The final prampt lets the user enter the maximm
mmber of iterations to campute M, which is the required number of failures
one needs to experience to uncover all faults within the program.

D~-3.4. Model Outputs. If a solution is found before the maximum rumber of
iterations is reached, successful convergence output occurs (Figure D~3.2).
Otherwise, the user is allowed to repeat execution of the Musa model. After
successful output, the user is prompted to see whether he or she wishes to run
the Calendar Time Component. This camponent camputes resource allocation for
the testing segments. For further information on the description and cutputs
of the Musa Calerdar Time Component, see the SMERFS User's Guide.

D-6

THE MAX. LIKELIHOOD ESTIMATES AFTER ___ ITERATIONS ARE:

1. THE TOTAL NUMBER OF ERRORS THAT MUST BE DETECTED BEFORE
ALL ERRORS IN THE CODE ARE FOUND IS
WITH APP. 95% C.I. OF (|)

2. THE MAXIMUM LIKELIHOOD ESTIMATE OF THE INITIAL MEAN TIME
BEFORE FAILURE (MTBF) FOR THE PROGRAM IS
WITH APP. 95% C.I.. OF (,)

THE ESTIMATE OF THE FAILURE MOMENT STATISTIC IS

WITH APP. 95% C.I. OF (,)

THE ESTIMATE OF THE CURRENT MEAN TIME BEFORE THE NEXT
SOFTWARE ERROR OCCURRENCE IS

AND THE ESTIMATE OF THE FUTURE RELIABILITY FOR THE SAME
AMOUNT OF COMPLETED TESTING TIME IS

PLEASE ENTER 1 TO ESTIMATE FUTURE RELIABILITY
MEASURES AND TESTING TIME REQUIRED TO ACHIEVE
SPECIFIED GOALS; ELSE ZERO.

PLEASE ENTER THE DESIRED GOAL FOR MTBF.

AN ADDITIONAL ERRORS NEED TO BE DETECTED TO
ACHIEVE THE DESIRED GOAL; AND THAT WILL CONSTITUTE AN
ADDITIONAL HOURS OF CPU TESTING TIME.

PLEASE ENTER 1 TO TRY ANOTHER GOAL FOR MTBF;
ELSE ZERO.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-3.2. MUSMOD Successful Convergence Output.

D-7

S

D-4. MORANDA'S GECMETRIC MODEL.

D-4.1. Model Description. This execution time data model is a variation of
the Jelinski-Moranda De-Eutrophication Model. The process of
de-eutrqixicztimpmmesttatthesoftwamhazardmteisreducedbythe
same amount at the time of each error detection. The software hazard rate is
defined as the conditional probability that a software failure occurs in an
mtezvaloftmeglventhatthesoftwarehasmtfaJ.leduptothebegmm.ngof
that time interval. The de-eutrophication process is geametric for this model
because the hazard rate function decreases in a geametric progression as the
detection of errors occurs.

D-4.2. Model Assumptions. The model presumes the following:

a. The software is operated in a way similar to its expected operational
usage.

b. The program will never be error free.

c. The probability of detecting a given error may not equal the
probability of detecting another given error.

d. The probability of detecting a given error is not affected by the
probability of detecting another given error (i.e., the detection of errors is
independent) .

e. The rate at which errors are detected follows a geametric progression
which is constant between error occurrences. This implies that errors become
harder to detect as debugging progresses.

D-4.3. Model Inputs. The model inputs include data entered through the
SMERFS DATINP and responses to proampts from the SMERFS GEOGMOD module.

D-4.3.1. DATINP Inputs. The data input via the DATINP module consists of the
time between software failure occurrences measured in either CPU time or
calendar (wall clock) time.

D-4.3.2. GEOMOD Prompts. GECMOD prampts consist of description and list,
input, and prediction vector creation prampts.

D-4.3.2.1. GEOMOD Description and List Prompt. GBEOMOD prampts the user to
see whether he or she wants a list of the model's assumptions and data
requirements. The assumptions listed are those discussed above. The data
requirements of the model are previously input to DATINP.

D-4.3.2.2. GE icti ati The GEAMOD
1nputprarptsaxee:dub1tede1gureD—4 1. 'mefustpzmptletstheuser
terminate model execution or indicate the least squares or maximum likelihood
method to estimate the proportionality constant for the software hazard
function. The second prompt enables the user to enter an initial estimate for
this constant. The user should choose a number between 0 and 1 to guarantee
convergence of the solution. The final pramwpt allows the user to enter the
maximum number of convergence iterations for the estimation technique chosen.

D-8

PLEASE ENTER 1 FOR MAXIMUM LIKELIHOOD, 2 FOR LEAST
SQUARES, OR 3 TO TERMINATE MODEL EXECUTION.

PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY
CONSTANT (A NUMBER BETWEEN ZERO AND ONE).

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-4.1. GEOMOD Input Prampts.

D-4.4. Model Outputs. If a solution is found before the maximum rmumber of
iterations is reached, successful convergence output occurs (Figure D-4.2).
Otherwise, the user is allowed to repeat execution of the model. As can be
seen from Figure D-4.2, outputs include estimates for the proporticnality
constant, initial hazard rate, mean time before the next failure, and current
purification level regardless of the estimation technique chosen (i.e., ML or
LS). If maximum likelihood is chosen, it also provides 95 per cent confidence
intervals for these estimates.

Since the model assumes infinite errors, it cannot campute the total

number of errors in the program. Instead, it estimates the degree of
"ourification" for the program.

D~9

I THE MAXIMUM LIKELIHOOD METHOD WAS SELECTED, THEN:

ML MODEL ESTIMATES AFTER ___ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
WITH APP. 95% C.. OF (,)
THE INITIAL HAZARD RATE IS
WITH APP. 95% C.I. OF (_)
THE MEAN TIME BEFORE THE NEXT FAILURE IS

WITH APP. 95% C.. OF (_)
THE CURRENT "PURIFICATION LEVEL" 1S
WITH APP. 95% C.I. OF (,)

ELSE, IF THE LEAST SQUARES METHOD WAS SELECTED, THEN:

LS MODEL ESTIMATES AFTER ___ ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
THE INITIAL HAZARD RATE IS
THE MEAN TIME BEFORE THE NEXT FAILURE IS
THE CURRENT "PURIFICATION LEVEL" IS

ENDF

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-4.2. GBEOMOD Successful Convergence Output.

D-10

D-5. ADAPTATION OF GOEL'S NON-HOMOGENEOUS POISSON PROCESS MODEL.

D-5.1. Model Description. This execution time data model is an adaptation of
Amrit Goel's NHPP interval count model.

D-5.2. Model Assumptions. This model's assumptions include the following:
a. The software is operated in a way similar its expected to operational
usage.

b. The prabability of detecting any given software error is the same as
the probability of detecting any other given error.

c. The cumilative mumber of software errors detected up to a point in
time are Poisson distributed. The expected mumber of software errors in any
small interval of time (t,t+ét) is proportional to the mmber of undetected
software errors at time t.

d. The mean of the Poisson distribution, M(t), is a bounded
non-decreasing function. As the length of testing tends to infinity, M(t)
approaches the expected total nmumber of eventually detected software errors.

D-5.3. Model Inputs. The model inputs include data entered through the
SMERFS DATINP module and response to prampts from the SMERFS NPIMOD module.

D-5.3.1. DATINP Inputs. The data input via the SMERFS DATINP consists of the
time between software failure occurrences measured in either CFU time or
calerdar (wall clock) time.

D-5.3.2. NPIMOD Prompts. NPIMOD prompts consist of description and list,
input, and prediction vector creation prompts.
D-5.3.2.1. NPIMOD Description and List Prompts. NPIMOD prampts the user to

see whether he or she wants a list of the model's assumptions and data
requirements. The assumptions listed are those discussed above. The data
requirements of the model are previocusly input to DATINP.

D-5.3.2.2. NPIMOD Input and Prediction Vector Creation Prompts. The NPTMOD
input prompts are exhibited in Figure D-5.1. The first prampt lets the user
enter an initial estimate for the proportionality constant. The user should
choose a number between 0 and 1. The final prampt allows the user to enter
the maximum mumber of iterations.

D-5.4. Model Outputs. If a solution is found before the maximm number of

iterations is reached, successful convergence output occurs (Figure D-5.2).
Otherwise, the user is allowed to repeat execution of the model.

D-11

PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY
CONSTANT (A NUMBER BETWEEN ZERO AND ONE).

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O0.D., December 1988

Figure D-5.1. NPIMOD Input Prompts.

MODEL ESTIMATES AFTER ___ ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
THE TOTAL NUMBER OF ERRORS 1S

PLEASE ENTER 1 FOR AN ESTIMATE OF THE RELIABILITY OF
THE PROGRAM FOR A SPECIFIED OPERATIONAL TIME BASED
ON THE CURRENT TESTING EFFORT; ELSE ZERO.

PLEASE ENTER THE SPECIFIED OPERATIONAL TIME.

THE ESTIMATED PROBABILITY THAT THE PROGRAM WILL
OPERATE WITHOUT ERROR FOR THE INPUT TIME IS

PLEASE ENTER 1 FOR AN ESTIMATE OF THE TESTING TIME REQUIRED

TIME; ELSE ZERO.

ENTER DESIRED RELIABILITY AND SPECIFIED OPERATIONAL TIME.

THE REQUIRED TESTING TIME TO ACHIEVE THE DESIRED RELIABILITY
FOR THE SPECIFIED OPERATIONAL TIME IS

PLEASE ENTER 1 TO TRY DIFFERENT VALUES; ELSE ZERO.

PLEASE ENTER 1 TO TRY ANOTHER OPERATIONAL TIME; ELSE ZERO.

TO ACHIEVE A SPECIFIED RELIABILITY FOR A SPECIFIED OPERATIONAL

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-5.2. NPIMOD Successful Convergence Output.

D-12

SRR]

D-6. THE GENERALIZED POISSON MODEL.

D-6.1. Model Description. This model, which is one of the four models within
SMERFS that cbtains reliability estimates and predictions for interval data,
is analogous in form to other models such as the Jelinski-Moranda, Lipow, and
Schick-Wolverton models. It is documented in a report by Schafer, Alter,
Angus, and Emoto written under contract to the Rome Air Development Center
(RADC) .

D-6.2. Model Assumptions. The model makes the following five assumptions:

a. The software is operated in a way similar to its expected operational
usage.

b. In any time interval, the expected mumber of discovered software
errors is proportional to the product of the total mumber of existing software
errors ard to same function of the amount of time spent in testing for
software errors. The function is expressed as an exponential function;
however, the function could be a linear or parabolic function to allow for a
broader class of adaptability.

C. All errors occur with the same probability, and the chance of any
given error occurring in no way affects the occurrence or lack of occurrence
of any other error (i.e., the errors are independent of each other).

d. The severity ct each error is equal.

e. At the end of the testing intervals, errors are corrected without
introducing new errors.

D-6.3. Model Inputs. The model inputs include data entered through the
SMERFS DATINP and responses to prompts from the SMERFS GPCMOD module.
D-6.3.1. DATINP Inputs. The data input through the SMERFS module consists of

the lengths of the various testing intervals and the mumber of software faults
discovered in each testing interval.

D-6.3.2. GEOMOD Prampts. GPOMOD prompts consist of description and list,
correction vector creation, input, and prediction vector creation prampts.

D-6.3.2.1. GEOMOD Description and List Prompt. GPOMOD prompts the user to
see whether he or she wants a list of the model's assumptions and data
requirements. The assumptions listed are those discussed above. The data
requirements of the model are previously input to DATINP.

D-6.3.2.2. GPOMOD Correction Vector Creation Prompts. SMERFS prompts for a

flag which indicates whether or not software fault corrections were performed
in the same interval in which they were detected. An error correction vector
is created if all error detections and corrections happened during the same

intervals; otherwise, the user must enter the mmber corrected at the end of

each period of testing.

D-13

mrtpmptsaree:dn.bwedmmgureD-Gl. 'Ihefu'stpralptletstheuser
terminate model execution or specify the method of estimating (i.e., maximm
likelihood or least squares) the model's proporticnality constant and the
initial total mumber of errors in the software. After the user enters the
desired method, GPOMOD prampts the user for the weighting function or a list
of the available functions. If the user desires a list, two weighting
functions are listed if least squares was chosen as the method of model

estimation; otherwise, one weighting function is listed. The third
prampt lets the user specify the weighting function which is either a simple
parabolic function or same other polynamial function of order a. If the
latter choice is made, GPCMOD will additionally prampt for the order, a, of
the polynomial. If the maximum likelihood method was selected earlier, the
GPOMOD will prampt the user for an initial estimate of a. In either case, the
user is prampted for an initial estimate of the total mumber of software
errors and finally for the maximm mmber of iterations to be used for the
model parameter estimation method.

The GPOMOD prediction vector creation prampts occur later upon successful
convergence of the model parameter estimation method.

D-6.4. Model outputs. If the maximum number of iterations is reached before
a solution is found, SMERFS outputs attempted estimates of the model's
parameters and the mumber of remaining software errors. If processing errors
occur, then appropriate error messages are output. In either case, the user
is allowed to try again. If the model successfully converges to a solution,
the output seen in Figure D-6.2 occurs.

D-14

PLEASE ENTER 1 FOR MAXIMUM LIKELIHOOD, 2 FOR LEAST
SQUARES, OR 3 TO TERMINATE MODEL EXECUTION.

PLEASE ENTER THE WEIGHTING FUNCTION NUMBER, OR ZERO
FOR A LIST.

THE AVAILABLE WEIGHTING FUNCTIONS ARE
1 X(I) ** 2/2 (SCHICK—-WOLVERTON MODEL)
2 X() ** ALPHA (WHERE ALPHA IS INPUT)

IF THE MAXIMUM LIKELIHOOD METHOD WAS SELECTED, THEN:
3 X(l) ** ALPHA (WHERE ALPHA IS ESTIMATED)
END IF
PLEASE ENTER THE WEIGHTING FUNCTION NUMBER.
WFANALPHA INPUT FUNCTION WAS SELECTED, THEN:
PLEASE ENTER THE DESIRED ALPHA.
ELSE, IF THEALPHA ESTIMATION FUNCTION WAS SELECTED, THEN:
PLEASE ENTER AN INITIAL ESTIMATE FOR ALPHA.

END IF

PLEASE ENTER AN INITIAL ESTIMATE OF THE TOTAL NUMBER OF
ERRORS.

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software {SMERFC) USER's Suide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-6.1. GPQMOD Input Prampts.

D~-15

——*—”

IF THE MAXIMUM LIKELIHOOD METHOD (OTHER THAN ALPHA ESTIMATED) WAS
SELECTED, THEN: .
ML MODEL ESTIMATES, USING THE WEIGHTING FUNCTION TYPE _ , AFTER

___[TERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
WITH APP. 95% C.I. OF (
THE TOTAL NUMBER OF ERRORS IS
WITH APP. 95% C.I. OF (,)
THE REMAINING NUMBER OF ERRORS IS

WITH APP. 95% C.I. OF ()

ELSE, [FTHE LEAST SQUARES METHOD WAS SELECTED, THEN:

LS MODEL ESTIMATES, USING THE WEIGHTING FUNCTION TYPE __, AFTER
____ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
THE TOTAL NUMBER OF ERRORS IS
THE REMAINING NUMBER OF ERRORS IS

ELSE, /F THE MAXIMUM LIKELIHOOD METHOD WITH ALPAHA ESTIMATED) WAS
SELECTED, THEN:

ML MODEL ESTIMATES, USING THE WEIGHTING FUNCTION TYPE 3, AFTER
___[TERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS

THE TOTAL NUMBER OF ERRORS IS
THE REMAINING NUMBER OF ERRORS IS
ANDALPHAIS

END IF

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO.

ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD.

THE EXPECTED NUMBER OF ERRORS IS
WITH APP. 95% C.I. OF (_)

PLEASE ENTER 1 TO TRY ANOTHER TESTING LENGTH; ELSE ZERO.

Source: NSWC TR 84-373 Revision 1, Statistical Mcdeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-6.2. GPOMOD Successful Convergence Output.

D-16

——

—

D-7. GOEL'S NHPP MODEL.

D-7.1. Model Description. This model is one of the four models within SMERFS
that obtains reliability estimates and predictions for interval data. It was
developed by Amrit Goel and Kazu Okumoto. Following other models, it assumes
that counts of software failures over time intervals that don't overlap follow
a Poisson distribution. A difference between this model and other Poisson
models is that this model treats a program'’s initial error content as a random
variable, and not as a fixed constant.

D-7.2. Model Assumptions. This model makes the following assumptions:
a. The software is operated in a way similar to its expected operational
usage.

b. The munber of software errors detected in successive time intervals
are independent.

c. The probability of detecting any given error is the same as the
probability of detecting any other given error. In addition, the severity of
each error is assumed to be equal.

d. At any time t, the cumilative number of errors detected follows a
Poisson distribution with mean m(t). m(t) satisfies a first order
non-hamogeneous linear differential equation.

e. m(t) is a bounded, nondecreasing function of t which approaches the
expected total number of errors to be detected as t tends to .

D-7.3. Model Inputs. The model inputs include data entered through the
SMERFS DATINP and responses to prampts from the SMERFS NPIMOD module.
D-7.3.1. DATINP Inputs. The data input through the SMERFS DATINP module

consists of the lengths of the various testing intervals and the number of
software errors discovered in each testing interval.

D-7.3.2. NPIMOD Prompts. NPIMOD prampts consist of description and list,
input, and prediction vector creation prompts.
D-7.3.2.1. NPIMOD Description and List Prampt. NPIMOD prampts the user to

see whether he or she wants a list of the model's assumptions and data
requirements. The assumptions listed are those discussed above. The data
requirements of the model are previously input to DATINP.

D-7.3.2.2. NPIMOD Input and Prediction Vector Creatjon Prompts. The NPIMOD
input prampts are exhibited in Figure D-7.1. ‘Ihef:.rstprm:ptletstheuser

terminate model execution or specify the method of estimating (i.e., maximum
likelihood or least squares) the model's proporticnality constant and the
total number of errors in the software. The second prampt allows the user to
enter an initial estimate for the model's proporticnality constant. A number
between 0 and 1 must be chosen to guarantee convergence of the solution. It
is recammended that the user choose a small mumber first, say 0.05 or 0.1, and

D-17

PLEASE ENTER 1 FOR MAXIMUM LIKELIHOOD, 2 FOR LEAST SQUARES,

OR 3 TO TERMINATE MODEL EXECUTION.

PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY
CONSTANT (A NUMBER BETWEEN ZERO AND ONE).

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-7.1. NPIMOD Input Prompts.

then gradually increase it. The last pramwpt in the first memu lets the user
enter the maximum number of iterations to use for the estimation method

selected.

The NPIMOD prediction vector creation prompts occur later upon successful
convergence output of the model. Through these prampts, NPIMOD lets the user
campute predicted interval error counts.

D-7.4. Model Outputs. If the maximum number of iterations is reached before
a solution is found, maximum iteration output occurs unless a processing error
happens. If the model successfully converges to a solution, the output seen
in Figure D-7.2 occurs. If maximum likelihood is chosen, then ML estimates
are shown; ctherwise, least squares estimates are output. In either event,
the user is allowed to estimate the number of expected errors in the next
testing period. Figure D-7.2 shows ensuing output if the user does want an
estimate of the number of expected errors in the next testing period.

D-18

IF THE MAXIMUM LIKELIHOOD METHOD WAS SELECTED, THEN:

ML MODEL ESTIMATES AFTER __ ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
WITH APP. 95% C.I. OF (
THE TOTAL NUMBER OF ERRORS IS
WITH APP. 95% C.l. OF (

b

ELSE, IFTHE LEAST SQUARES METHOD WAS SELECTED, THEN:

LS MODEL ESTIMATES AFTER __ ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
THE TOTAL NUMBER OF ERRORS IS

END IF

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO.

ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD.

THE EXPECTED NUMBER OF ERRORS IS

PLEASE ENTER 1 TO TRY ANOTHER TESTING LENGTH; ELSE ZERO.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-7.2. NPIMOD Successful Convergence Output.

D-19

RN]

D~8. BROOKS AND MOTLEY'S MODEL.

D-8.1. Model Description. This model actually consists of four models each
of which obtains reliability estimates and predictions for interval data.
They were developed by Broocks and Motley of IEBM and include the following:
Binamial and Poisson Models for a component of a program and Binamial and
Poisson Models for a program. Each of these models accounts for unequal
testing of programs in a given testing period.

D-8.2. Model Assumptions. Each model makes the following assumptions:

a. The software is operated in a way similar to its expected operational
usage.

b. The ratio of the number of errors reintroduced during the software
correction process to the number of errors that are detected is constant.

c. The probability of detecting any error during a given unit interval
of testing is constant for any occasion and independent of error detections.
The constant is denoted as g in the case of the binomial model, and ¢ for the

Poisson model.

D-8.3. Model Inputs. The model inputs include data entered through the
SMERFS DATINP and responses to prampts from the SMERFS BAMMOD module.
D-8.3.1. DATINP Imputs. The data input through the SMERFS DATINP module

consists of the lengths of the various testing intervals and the number of
software errors discovered in each testing interval.

D-8.3.2. BAMMOD Prompts. BAMMOD prompts consist of description ard list,
fraction of code under test, extended description and list, input, and
prediction vector creation prompts.

D-8.3.2.1. BAMMOD Description and List Prompts and Fraction of Code Under
Test Prompt. BAMMOD prampts the user to see whether he or she wants a list of

the model's assumptions and data requirements. The assumptions listed are
those discussed above. The data recquirements of the model are previously
input to DATINP. In addition, BAMMOD has extended description and list
prampts which provide extended descriptions of the Binamial and Poisson
Models. The fraction of code under test prampt lets the user campensate for
partial software testing.

D-8.3.2.2. BAMMOD Input and Prediction Vector Creation Prompts. The BAMMOD
input prampts are exhibited in Figure D-8.1. The first prampt lets the user
select the appropriate model of interest (Binamial or Poisson) or terminate
model execution. The second prompt allows the user to either input or select
an initial estimate for a, the probability of correcting errors without
inserting new ones. If a decision is made to input a, a suggested range is
0.85-0.95 if no prior knowledge is available. In either event, the total
number of errors and the error detection probability are then stimated. The
behavior of the estimation process can be cbserved by trying both low values,
such as 0.05-0.1, and high values, such as 0.85-0.90 for the error detection

D-20

PLEASE ENTER 1 FOR THE BINOMIAL MODEL, 2 FOR THE POISSON
MODEL, OR 3 TO TERMINATE MODEL EXECUTION.

PLEASE ENTER 1 TO INPUT ALPHA (THE PROBABILITY OF
CORRECTING ERRORS IN THE PROGRAM WITHOUT INSERTING
NEW ERRORS), OR 2 TO ESTIMATE ALPHA.

IFALPHA IS TOBEINPUT, THEN:
PLEASE ENTER THE DESIRED ALPHA.

PLEASE ENTER INITIAL ESTIMATES FOR THE TOTAL NUMBER
OF ERRORS AND THE ERROR DETECTION PROBABILITY.

ELSE, IFALPHA /S 7O BE ESTIMATED, THEN:

PLEASE ENTER INITIAL ESTIMATES FOR THE TOTAL NUMBER

OF ERRORS, THE ERROR DETECTION PROBABILITY, AND
ALPHA_

END IF

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-8.1. BAMMOD Input Prompts.

probability. The last prompt lets the user enter the maximm number of
convergence iterations to use for the maximm likelihood estimation method of

canputing the model parameters.
The BAMMOD prediction vector creation prampts occur later upon successful

convergence output of the model. Through these prampts, BAMMOD lets the user
campute predicted interval error counts.

D-21

D-8.4. Model Outputs. If the maximm number of iterations is reached before
a solution is found, maximm iteration output occurs unless a processing error
happens. If the model successfully converges to a solution, the output seen
in Figure D-8.2 occurs. BAMMOD solutions are based upon maximm likelihood
estimates. The last estimate in the figure will be listed only if the user
selected alpha estimation. Observing the lower portion of the figure, cne may
see that SMERFS allows for the optional prediction of errors in the next

testing period.

D-22

THE MODEL WITH ESTIMATES, AFTER INTERATIONS
ARE:

PROBABILITY OF DETECTING ERRORS
THE TOTAL NUMBER OF ERRORS IS

IFALPHA WAS ESTIMATED, THEN:

PROB. OF CORRECTING ERRORS WITHOUT ERROR

END IF

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO.

ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD.

ENTER THE FRACTION OF THE PROGRAM TO BE TESTED
(FOR FULL PROGRAM, ENTER A 1).

HOW MANY ERRORS HAVE BEEN FOUND TO DATE IN THE SECTION
OF THE CODE TO BE TESTED.

THE EXPECTED NUMBER OF ERRORS IS

PLEASEENTER 1 TO TRY ANOTHER TESTING LENGTH; ELSE ZERO.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Re.}lability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-8.2. BAMMOD Successful Convergence Output.

D-23

D-9. NORMAN SCHNEIDEWIND'S MODEL.

D-9.1. Model Description. This model is ancther one of the four models
within SMERFS that obtains reliability estimates and predictions for interval
data. It was developed by Norman Schneidewind. The model theorizes that
recent error counts are generally more useful than earlier ones when
predicting future error counts because the error detection process changes as
testing progresses over time. The model employs three approaches in utilizing
error count data:

a. Use all error counts for all m intervals of testing.

b. Campletely ignore error counts from the first s - 1 intervals of
testing where 2 < s < m. Only data fram intervals s through m are considered.

c. For intervals 1 throucgh s - 1 use the cumilative error count. For
interval s through m, use the individual error counts.

D~9.2 Model Assumptions. This model makes the following assumptions:

a. The software is operated in a way similar to the way it is expected
to be used.

b. All errors are indeperdent and occur wifh equal probability.

c. The ratio of the error correction rate to the number of errors to be
corrected is constant.

d. As testing progresses, the mean mumber of errors that are detected
decreases fram one interval to the next.

e. The length of each testing period is of the same duration.

f. At the time of the test, the ratio of the rate of error detection to
the number of errors within the program is constant. The process of error
detection follows a non-hamogeneous Poisson process where the error detection
rate decreases exponentially.

D~9.3. Model Inputs. The model inputs include data entered through the
SMERFS DATINP and responses to prampts from the SMERFS SDWMOD module.

D-9.3.1. DATINP Inputs. The data input through the SMERFS DATINP consists of
the number of software errors discovered in each testing interval.

D-9.3.2. SDWMOD Prompts. SDWMOD prampts consist of description and list,
input, and prediction vector creation prompts.

D-9.3.2.1. SDWMOD Description and List Prompts. SDWMOD prampts the user to
see whether he or she wants a list of the model's assumptions and data
requirements. The assumptions listed are those discussed above. The data
requirements of the model are previously input to DATINP. The description
prampt also includes a description of the three approaches for utilizing the
error count data. SMERFS refers to these three approaches as the three
treatment types.

D-24

D-9.3.2.2. SDWMOD Input and Prediction Vector Creation Prompts. The SDWMOD
uprtprmptsaree:du.bltedelgureD-Ql The first prompt lets the user
terminate model execution or specify one of the three treatment types. If
tmamenttypels20r3,mentheusermstalsoentertheassoc1atedvalue
of s. 'meuserlsthenpmnptedforanmltlalestmateoftheﬁpammeterm
the formila for the mean rumber of errors for the i-th period of testing.
Finally, the user is prampted for the maximm rumber of iterations to use for
the maximum likelihood method.

PLEASE ENTER THE DESIRED MODEL TREATMENT NUMBER, OR A 4
TO TERMINATE MODEL EXECUTION.

IFTHE TREATMENT TYPE/S 2 OR 3 THEN:
PLEASE ENTER THE ASSOCIATED VALUE OF S.
END IF

PLEASE ENTER AN INITIAL ESTIMATE FOR THE PARAMETER BETA,
WHERE THE MEAN NUMBER OF ERRORS FOR THE | - TH PERIOD
IS TAKEN AS:

MEAN() = ALPHA*(EXP(-BETA(l- 1)) — EXP(— BETA(l)))/BETA.

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figqure D-9.1. SOWMOD Input Prampts.

The SDWMOD prediction vector creation prampts occur later upon successful
convergence output of the model. Through these prampts, SDWMOD lets the user
campute predicted interval error counts.

D-9.4. Model Outputs. If the maximum rumber of iterations is reached before
a solution is found, maximum iteration output occurs unless a processing error
happens. If the model successfully converges to a solution, the output seen
in Figure D-9.2 occurs. The a and § parameters of the error detection rate
formula and the weighted sum of squares between the predicted and cbserved

D-25

;——#

error counts are output. This latter quantity helps decide which treatment
type is best. Output also includes an estimate of the mumber of errors

in the next testing period and the number of testing periods needed
to discover the next M errors, where M is specified by the user.

TREATMENT __ MODEL ESTIMATES AFTER ___ ITERATIONS ARE:
BETA
ALPHA

AND THE WEIGHTED SUMS ~ OF — SQUARES BETWEEN THE PREDICTED
AND OBSERVED ERROR COUNTS IS

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO.

THE EXPECTED NUMBER OF ERRORS IS

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF
TESTING PERIODS NEEDED TO DISCOVER THE NEXT
M ERRORS; ELSE ZERO.

PLEASE ENTER THE VALUE FOR M.

THE EXPECTED NUMBER OF PERIODS IS

PLEASE ENTER 1 TO TRY A DIFFERENT VALUE FOR M;
ELSE ZERO.

=+ THE ESTIMATE CANNOT BE MADE FOR THE SPECIFIED M VALUE.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, 0.D., December 1988

Figure D-9.2. SDWMOD Successful Convergence Output.

D-26

E-1. SCOPE

The following terms are identified and defined as they are used
throughout the Software Maturity Model Investigation.

Binomial distrilbution

A discrete prabability function whose terms correspond to successive
terms in the binomial expansion.

chi-square distribution
A special case of the gamma distribution.

Coefficient of Kurtosis

A measure of the perkiness of a distribution. A large coefficient of
kurtosis for a distribution indicates that the values of the distribution are
concentrated near the mean.

Coefficient of Skewness
A measure of the asymmetry of a distribution. A distribution whose
longer tail occurs to the left is said to be skewed to the left, whereas a

distribution whose longer tail occurs to the right is said to be skewed to the
right.

Confidence interval

Specifies a statistical range of values for scme parameter. The
parameter being estimated is said to lie within confidence limits which
express the degree of confidence.

cumilative distribution function

For a random variable X it is the probability that X < x where x is any
real nmumber, such that -© < x < ®,

D' ! '! !]
A probability function or a cumilative distribution function.
exp

An abbreviation for a function expressed in terms of powers of e, the
base of natural logarithms.

E !l] !'! ‘! !'o

The distribution of a random variable whose corresponding probability
density function is a certain exponential function.

E tial functi

A mathematical function expressed in terms of a power of the base of
natural logarithms, e.

Distributi
A random variable has the gamma distribution if the probability density
function is a certain camplex mathematical function involving the gamma
function.
Gamma Function

A camplex mathematical function defined in terms of what is known in
calculus as an integral function.

Geametric Progression
A geametric progression is a sequence of numbers where the ratio of any

given mumber to the one that precedes is equal to a constant known as the
cammon ratio.

Hazard Rate
The corditional probability that a software failure occurs in an interval
of time given that the software has not failed up to the beginning of that
time interval.
Estimatio

A method of approximating or fitting data by same mathematical function.
The approximating function is known as the least-squares approximation.

Limit
A function f(x) of a single variable x approaches a mumber L as a limit

if for any positive mumber € there exists a itive mumber § such that the
absolute value of f(x) -L<evmenevero<T:s-xo | < 6.

L Funct i

An algebraic function in which the highest degree term in the variable(s)
is of the first degree.

E-2

Maximm Likelihood Estimatjon
A method for estimating parameters of a mathematical function. The
mathematical function is known as the likelihood function. Techniques of

calculus are used to maximize this function for one or more parameters being
determined. A system of simultaneous equations is then solved to determine

the parameters.
Mean

The mathematical expectation for a discrete or random variable is
referred to as the mean of that randam variable. Often represented by the
Greek letter u.

Mean Time Between Failure

The expected time between one error occurrence and another.

Mean Time To Repair

The expected time between the occurrence of an error and its repair.
Nonhamogeneous Linear Differential Equation

A linear differential equation whose right side is a nonzero function of
the indeperndent variable.

Non-Hamogeneous Poisson Process

A random process (e.g., of software failures) whose value (e.qg., time of
occurrence of software failure) at each point in time follows a Poisson
probability distribution that itself varies with time.

Parameter

A variable or constant which appears in a mathematical expression. The
specific form of the expression is determined by the value of the constant or
variable.

Poi Di

A discrete probability distribution whose probability function is a
certain mathematical function discovered by S. D. Poisson in the 19th century.

Probabilif

A measure of the chance that an event will or will not occur. This
measure will always be a mumber between 0 and 1.

Probabjlity Density Function

A continuous probability function for one or more continuous random
variables.

E-3

Probability Distribution

A prabability function.

Probability Functi

A probability function of a single random variable is either discrete or
contimious. In either case it is a nomegative mmber. In the discrete case,
the sum of all possible functional values equals 1. In the continuous case,
the improper integral of the function is 1. These ideas are generalized to
two or more randam variables giving us joint prabability distributions for the

vadratic functi

An algebraic function possessing quantities of the second degree or less.

Random Variable

A variable, in the mathematical sense, which takes on numerical values
associated with the ocutcame of a chance experiment.

Remaining Number of Errors

The nmumber of software errors remaining in a program.
Software Error

A human error which introduces a fault in software.
So il

A deviation of the operation of software from its requirements. It is
caused by a software fault.

Software Fault

A defect in software which causes a software failure to occur when that
software is executed.

Software Maturity

This is defined in AFOTECP 800-2 Volume 1, 1 August 1986, as "a measure
of the software's evolution toward satisfying all documented user
requirements."

Software Performance Parameter
An objectively quantifiable measure of an aspect of software behavior.

E-4

Software Quality Indicator

According to AMC-P 70-14, 30 April 1987, software quality indicators are
"quality indicators designed for and specifically allied to software
projects." AMC-P 70-14 further defines quality indicators as "process

quidelines in the form of detailed data, derived from scheduled surveys,
inspections, evaluations, and tests, that provide insight into the condition

of a product or process."

mc! B] L3 ! 0] .!

This is defined in William Farr's survey of software reliability modeling
and estimation as "the probability that a given software program will operate
without failure for a specified time in a specified envirorment." -

Standard Deviation

This is the positive square root of the variance of a randam variable.
Often dencted by the Greek letter o.

Time Between Frror Occurrences

This simply refers to the difference between the points in time at which
errors occur.

Variance

The variance is a measure of the dispersion that values of a random
variable have about their mean. A small variance indicates a concentration of
values near the mean, whereas a large variance indicates a tendency for values
to be scattered far from the mean. The variance is a mumber that is

nonnegative.

E-5

This Page Intentionally Blank

E-6

APPENDIX F

DISTRIBUTTION

Addressee of Copies

Director

U.S. Army Materiel Systems Analysis Activity

ATIN: AMXSY-MP 1
Aberdeen Proving Ground, MD 21005-5071

Cammander

U.S. Army Test and Evaluation Cammand
AMSTE-EV-S

AMSTE-TC-M

AMSTE-TE

AMSTE-TO

Aberdeen Proving Grourd, MD 21005-5055

3343

Cammander

Defense Technical Information Center

ATIN: FDAC 2
Cameron Station

Alexardria, VA 22304-6145

Cammander

U.S. Army Cold Regions Test Center

ATIN: STECR-IM 1
APO Seattle, WA 98733-5000

Cammander

U.S. Ammy Cambat Systems Test Activity

ATIN: STECS-DA-M 2
Aberdeen Proving Ground, MD 21005-5000

Cammander

U.S. Army Dugway Proving Grourd

ATIN: STEDP-FO-P 1
Dugway, UT 84022-5000

Cammarder
U.S. Army Electronic Proving Grourd

3

i

3335

3

Fort Huachuca, AZ 85613-7110

Addressee

Cammander

U.S. Ammy Jefferson Proving Ground
ATIN: STEJP-TD-E

Madison, IN 47250-5000

Cammander

U.S. Army Tropic Test Center
ATIN: STEIC-TD-AB

APO Miami, FL. 34004-5000

Cammander

U.S. Army White Sands Missile Range

ATIN: STEWS-TE-A

ATIN: STEWS-TE-M

ATTIN: STEWS-TE-O

ATIN: STEWS-TE-PY

White Sands Missile Range, NM 88002-5000

Cammander

U.S. Army Yuma Proving Ground
ATIN: STEYP-MSA

Yuma, AZ 85634-5000

F=2

of Copies

N

